Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia
Abstract
1. Introduction
2. Material and Methods
2.1. Assessment of Stand Damage
2.2. Assessment of Soil Damage
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Picchio, R.; Venanzi, R.; Latterini, F.; Marchi, E.; Laschi, A.; Lo Monaco, A. Corsican pine (Pinus laricio Poiret) stand management: Medium and long lasting effects of thinning on biomass growth. Forests 2018, 9, 257. [Google Scholar] [CrossRef]
- Naghdi, R.; Lotfalian, M.; Bagheri, I.; Jalali, A.M. Damages of skidder and animal logging to forest soils and natural regeneration. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2009, 30, 141–149. [Google Scholar]
- Bustos, O.; Egan, A.; Hedstorm, W. A comparison of residual stand damage along yarding trails in a group selection harvest using four different yarding methods. North. J. Appl. 2010, 27, 56–61. [Google Scholar] [CrossRef]
- Han, S.K.; Cho, M.J.; Baek, S.A.; Yun, J.U.; Cha, D.S. The Characteristics of Residual Stand Damages Caused by Skyline Thinning Operations in Mixed Conifer Stands in South Korea. J. For. Environ. Sci. 2019, 35, 197–204. [Google Scholar]
- Shigo, A.L. Tree Decay: An Expanded Concept USDA Department of Agriculture; U.S. Government Printing Office: Washington, DC, USA, 1979; No. 419. [Google Scholar]
- Vasiliauskas, R. Damage to Trees due to Forestry Operations and its Pathological Significance in Temperate Forests: A Literature Review. J. For. 2001, 74, 319–336. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Bonyad, A.; Mederski, P.S.; Venanzi, R.; Nikooy, M. Detailed analysis of residual stand damage due to winching on steep terrains. Small-Scale For. 2019, 18, 255–277. [Google Scholar] [CrossRef]
- Nichols, M.T.; Lemin, R.C., Jr.; Ostrofsky, W.D. The impact of two harvesting systems on residual stems in a partially cut stand of northern hardwoods. Can. J. For. Res. 1994, 24, 350–357. [Google Scholar] [CrossRef]
- Becker, P.; Jensen, J.; Meinert, D. Conventional and mechanized logging compared for Ozark hardwood forest thinning: Productivity, economics, and environmental impact. North. J. Appl. For. 2006, 23, 264–272. [Google Scholar] [CrossRef][Green Version]
- Solgi, A.; Najafi, A. The impacts of ground-based logging equipment on forest soil. J. For. Sci. 2014, 60, 28–34. [Google Scholar] [CrossRef]
- Tavankar, F.; Bonyad, A.E.; Nikooy, M.; Picchio, R.; Venanzi, R.; Calienno, L. Damages to soil and tree species by cable-skidding in Caspian forests of Iran. For. Syst. 2017, 26, 11. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Soil compaction and growth of woody plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Ferenčík, M.; Slugeň, J. Evaluation of damages caused by the cut-to-length technology on beech stand after salvage felling. Acta Fac. For. Zvolen 2012, 54, 29–41, ISSN 0231-5785. [Google Scholar]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Solgi, A.; Naghdi, R.; Marchi, E.; Laschi, A.; Keivan Behjou, F.; Hemmati, V.; Masumian, A. Impact Assessment of Skidding Extraction: Effects on Physical and Chemical Properties of Forest Soils and on Maple Seedling Growing along the Skid Trail. Forests 2019, 10, 134. [Google Scholar] [CrossRef]
- Gebauer, R.; Neruda, J.; Ulrich, R.; Martinková, M. Soil Compaction—Impact of Harvesters’ and Forwarders’ Passages on Plant Growth, Sustainable Forest Management—Current Research. Available online: https://www.intechopen.com/books/sustainable-forest-management-current-research (accessed on 15 October 2020).
- Poršinsky, T.; Sraka, M.; Stankić, I. Comparison of two approaches to soil strength classifications. J. Theory Appl. For. Eng. 2006, 27, 17–26. [Google Scholar]
- Arvidsson, J. Subsoil compaction caused by heavy sugarbeet harvesters in southern Sweden: I. Soil physical properties and crop yield in six field experiments. Soil Tillage Res. 2001, 60, 67–78. [Google Scholar] [CrossRef]
- Lukáč, T. Viacoperačné Stroje v Lesnom Hospodárstve (Multioperational Machines in Forestry); Vydavateľstvo Technickej Univerzity vo Zvolene: Zvolen, Slovakia, 2005; pp. 112–113. ISBN 80-228-1348-6. [Google Scholar]
- Ulrich, R.; Schlaghamerský, A.; Štorek, V. Harvester Technics Using in Thinning; MZLU v Brně: Brno, Czech Republic, 2002; p. 85. [Google Scholar]
- Slamka, M.; Radocha, M. Results of harvesters and forwarders operations in Slovakian forests. Cent. Eur. For. J. 2010, 56, 1–15. [Google Scholar] [CrossRef][Green Version]
- Schürger, J. Evaluation of the Negative Impact of Skidders in Cableway Terrains. Ph.D. Thesis, Technical university in Zvolen, Zvolen, Slovakia, 2012; pp. 1–198. [Google Scholar]
- Allman, M.; Jankovský, M.; Messingerová, V.; Allmanová, Z.; Ferenčík, M. Soil compaction of various Central European forest soils caused by traffic of forestry machines with various chassis. For. Syst. 2015, 24, 6. [Google Scholar] [CrossRef]
- Fjeld, D.; Granhus, A. Injuries after selection harvesting in multi-stored spruce stands–the influence of operating systems and harvest intensity. J. For. Eng. 1998, 9, 33–40. [Google Scholar]
- Sist, P.; Nolan, T.; Bertault, J.G.; Dykstra, D. Harvesting intensity versus sustainability in Indonesia. For. Ecol. Manag. 1998, 108, 251–260. [Google Scholar] [CrossRef]
- Nakou, A.; Sauter, U.H.; Kohnle, U. Improved models of harvest-induced bark damage. Ann. For. Sci. 2016, 73, 233–246. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar]
- Meng, W. Baumverletzungen durch Transportvorgänge bei der Holzernte: Ausmass und Verteilung; Folgeschäden am Holz und Versuch ihrer Bewertung. Ph.D. Thesis, Baden-Württemberg Ministerium für Ernährung, Landwirtschaft und Umwelt, Selbstverlag der Landesforstverwaltung Freiburg, Baden-Württemberg, Germany, 1978; p. 159. [Google Scholar]
- Buttora, A.; Schager, G. Holzernteschäden in Durchforstungsbeständen, Nr. 288; Eidgenössische Anstalt für das forstliche Versuchswesen: Birmensdorf, Switzerland, 1986; pp. 1–47. [Google Scholar]
- Maličký, M. Damage of the Remaining Stand and Soils after Skidding by Different Technologies in the Area of Forest District Slovenská Ľupča. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2016; p. 72. [Google Scholar]
- Máliš, P. Demage of the remaining stand by forestry machines on University Forest Entreprise in Zvolen. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2017; p. 57. [Google Scholar]
- Allman, M.; Jankovský, M.; Allmanová, Z.; Ferenčík, M.; Messingerová, V. Negatívne Dopady Ťažbovo-Dopravných Technológií Na Lesnú Pôdu a Možnosti Prevencie v Lesoch Slovenska; Technical University in Zvolen: Zvolen, Slovakia, 2017; p. 132. ISBN 978-80-228-2925-0. [Google Scholar]
- Eštok, T. Evaluation of the Timber Skidding by Tractor HSM 805 HD on the Area of the University Forest Enterprise. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2017; p. 70. [Google Scholar]
- Tsioras, P.; Liamas, D. Hauling damages in a mixed beech-oak stands. In Proceedings of the Formec 2010 “Forest Engineering: Meeting the Needs of the Socienty and the Enviroment”, Padova, Italy, 11–14 July 2010. [Google Scholar]
- Slugeň, J. Environmental aspects of the work of the harvester Timberjack 1270 D and the Forwarder Timberjack 1110 D under the conditions of the forest enterprise Slovenská Ľupča. Acta Fac. For. Zvolen 2009, 51, 97–108, ISSN 0231-5785. [Google Scholar]
- Kučera, M. Damage of the Remaining Stand by Harvester Technologies. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2015; p. 56. [Google Scholar]
- Korten, S. Ökosystem management I; Technische Universität Munchen: München, Germany, 2004. [Google Scholar]
- Allman, M.; Allmanová, Z.; Jankovský, M.; Ferenčík, M.; Messingerová, V. Damage of the remaining stands caused by various types of logging technology. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 379–385. [Google Scholar] [CrossRef]
- Wiedenbeck, J.; Smith, T.K. Hardwood management, tree wound response, and wood product value. For. Chron. 2019, 94, 292–306. [Google Scholar]
- Kohnle, U.; Kändler, G. Is Silver fir (Abies alba) less vulnerable to extraction damage than Norway spruce (Picea abies)? Eur. J. For. Res. 2007, 126, 121–129. [Google Scholar] [CrossRef]
- Metzler, B.; Hecht, U.; Nill, M.; Brüchert, F.; Fink, S.; Kohnle, U. Comparing Norway spruce and silver fir regarding impact of bark wounds. For. Ecol. Manag. 2012, 274, 99–107. [Google Scholar] [CrossRef]
- Mederski, P.S.; Bembenek, M.; Karaszewski, Z.; Pilarek, Z.; Łacka, A. Investigation of log length accuracy and harvester efficiency in processing of oak trees. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2018, 39, 173–181. [Google Scholar]
- Slugeň, J.; Peniaško, P.; Messingerová, V.; Jankovský, M. Productivity of a John Deere harvester unit in deciduous stands. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62, 231–238. [Google Scholar] [CrossRef]
- Stampfer, K.; Limbeck-Lilienau, B.; Steinmüller, T. Bestandesschäden bei der mechanisierten Holzernte am Steilhang. Bündner Wald 2002, 55, 37–42. [Google Scholar]
- Schoettle, R.; Pfeil, C.; Boes, T.; Ilg, H.D. Vorkonzentrierung durch Raupenharvester steigert Rückeleistung mit Seilschlepper. AFZ/Der Wald 1999, 18, 32–934. [Google Scholar]
- Kelley, R.S. Stand damage from whole-tree harvesting in Vermont hardwoods. J. For. 1983, 81, 95–96. [Google Scholar]
- Sirén, M. Tree damage in single-grip harvester thinning operations. J. For. Eng. 2001, 12, 29–38. [Google Scholar]
- Nill, M. Rindenschäden durch Holzernte in Baden-Württemberg-Ursachen und Prognose; Freiburg Forstl: Freiburg, Germany, 2011; Volume 50, p. 161. [Google Scholar]
- Einspahr, D.W.; Van Eperen, R.H.; Fiscus, M.H. Morphological and bark strength characteristics important to wood/bark adhesion in hardwoods. Wood Fiber Sci. 2007, 16, 339–348. [Google Scholar]
- Allmanová, Z. Soil Compaction and Changes of Carbon Dioxide Concentration in Soils Caused by Forestry Machine Traffic. Master’s Thesis, Technical University in Zvolen, Zvolen, Slovakia, 2013; p. 124. [Google Scholar]
- Lhotský, J. Zhutňovaní Půd a Opatření Proti Němu; Ústav zemnědelských a potravinářských informací: Praha, Czech Republic, 2000; pp. 1–62. [Google Scholar]
- Gerasimov, Y.; Katarov, V. Effect of bogie track and slash reinforcement on sinkage and soil compaction in soft terrains. J. Theory Appl. For. Eng. 2010, 31, 35–45. [Google Scholar]
Forest Stand | 366a | 366c | 507 | 537 | 566 |
---|---|---|---|---|---|
Technology | John Deere 1270D CTL tech. | John Deere 1270D CTL tech. | HSM805HD skidder | Horse + Zetor 7245 Animal tech. | Horse + Zetor 7245 Animal tech. |
Age (years) | 100 | 100 | 115 | 70 | 65 |
Area (ha) | 4.36 | 4.51 | 7.53 | 4.45 | 5.52 |
Slope (%) | 15 | 15 | 10 | 40 | 70 |
Aspect | NE | E | SE | SE | SE |
Stocking | 0.84 | 0.99 | 0.73 | 0.80 | 0.80 |
Tree species (%) | Sessile oak 92; Pine 6; Hornbeam 2 | Sessile oak 98; Beech 1; Hornbeam 1 | Sessile oak 67; Pine 22; Beech 11 | Beech 70; Fir 20; Spruce 10 | Beech 50; Sessile oak 25; Hornbeam 25 |
Mean stem volume (m3) | Sessile oak 0.84; Pine 1.63; Hornbeam 0.48 | Sessile oak 0.87; Beech 0.64; Hornbeam 0.17 | Sessile oak 1.33; Pine 1.29; Beech 1.81 | Beech 0.86; Fir 1.78; Spruce 1.50 | Beech 0.51; Sessile oak 0.37; Hornbeam 0.26 |
Soil type | Ilimerised soil | Ilimerised soil | Ilimerised soil | Brown forest soil | Brown forest soil |
Number of sample plots | 6 | 6 | 8 | 6 | 7 |
Felled volume (m3) | 238 | 174 | 382 | 164 | 123 |
Machine Type | John Deere 1270D | John Deere 1110 E | HSM 805 HD | Zetor 7245 |
---|---|---|---|---|
Dimensions width/length/height (mm) | 2766/11600/ 3850 | 2700/9820/ 3870 | 2400/5800/ 3200 | 2260/4530/ 2780 |
Weight (kg) | 17,499 | 17,300 | 9800 | 4100 |
Engine | John Deere 6090HTJ | John Deere 6068HTJ | Volvo Penta, four-cylinder | Z 7201 |
Power (kW) | 160 | 136 | 129 | 46 |
Maximum speed (km/hour) | 25 | - | - | 25 |
Winch | - | - | Double drum ADLER HY 20SG | Single drum |
Pulling force (kN) | - | - | 2 × 100 kN | 30.49 kN |
Front tyres | 600 × 26.5, 20 PR Forest King F NK | 710 × 26.5−20 | Nokian Forest King TRS LS-2 23.1–26 | 9.5–24 |
Back tyres | 600 × 34, 14 PR Forest King F NK | 710 × 26.5−20 | Nokian Forest King TRS LS-2 23.1–26 | 18.4–26 |
Damage Location | Characteristics |
---|---|
Root | Root damage (aboveground) at a distance of 0.21 to 1.0 m from the stem |
Buttress root | Damage of the butt part of a stem at a distance of maximum 0.2 m from the stem and to the height of 0.3 m on stem |
Stem | Stem damage at a height between 0.3–1.0 m |
Stem | Stem damage at a height above 1 m |
Wound Category | Damage Size (cm2) | Characteristic |
---|---|---|
0 | <10 | meaningless |
1 | 11–50 | very small |
2 | 51–100 | little |
3 | 101–200 | medium size |
4 | 201–300 | large |
5 | >300 | very large |
6 | Root rupture–breakage | destructive |
Damage Intensity Class | Damage Characteristics |
---|---|
1. The top layer of bark is damaged | The outer bark is damaged, cambium is undamaged, the tree reacts with low resin outflow, low risk of fungal infection |
2. Bark crushed (wrinkled) | Bark is wrinkled, but holds on a stem, fungal infection risk is low |
3. Wood exposed but undamaged | Bark is peeled off, wood is exposed but undamaged, fungal infection risk is moderate |
4. Wood exposed and slightly damaged | Bark is peeled off, wood is exposed and slightly damaged, high risk of fungal infection |
5. Wood exposed, and heavily damaged | Bark is peeled off, wood is exposed and heavily damaged, risk of fungal infection is very high |
Stand ID | 366a | 366c | 507 | 537 | 566 |
---|---|---|---|---|---|
Number of assessed trees at sample plots | 127 | 137 | 144 | 141 | 159 |
Number of damaged trees at sample plots | 26 | 32 | 28 | 28 | 23 |
Damage intensity (%) | 20.47 | 23.36 | 19.44 | 19.86 | 14.47 |
Felling intensity (%) | 18.59 | 16.96 | 18.18 | 18.02 | 16.32 |
Sum of wound areas (cm2) | 7335 | 8630 | 6830 | 7190 | 4790 |
Mean wound area/classification according to MENG | 222.27 large | 200.69 medium size | 145.32 medium size | 194.32 medium size | 171 medium size |
Stand | 366a | 366c | 507 | 537 | 566 |
---|---|---|---|---|---|
Bulk density stand (g·cm−3) | 1.15 | 1.10 | 0.95 | 0.89 | 0.91 |
Bulk density rut (g·cm−3) | 1.17 | 1.12 | 1.06 | 1.03 | 1.01 |
Bulk density centre (g·cm−3) | 1.20 | 1.08 | 1.03 | 0.96 | 0.95 |
Moisture stand (%) | 10.47 | 11.62 | 20.14 | 23.59 | 19.51 |
Moisture rut (%) | 15.29 | 17.60 | 28.40 | 25.71 | 21.38 |
Moisture centre (%) | 11.69 | 13.19 | 21.70 | 25.82 | 22.19 |
Duncan’s Test, Average Dry Bulk Density (g·cm−3) Approximate Likelihood of Post Hoc Tests Error: Between Groups = 0.01783, Degrees of Freedom = 193.00 | |||||
---|---|---|---|---|---|
Stand | 366a 1.1331 | 366c 1.0998 | 507 1.0143 | 537 0.95824 | 566 0.95525 |
366A | 2.70 × 10−1 | 1.33 × 10−4 * | 3.00 × 10−6 * | 4.00 × 10−6 * | |
366C | 2.70 × 10−1 | 4.72 × 10−3 | 1.50 × 10−5 * | 6.00 × 10−6 * | |
507 | 1.33 × 10−4 * | 4.72 × 10−3 * | 6.33 × 10−2 | 6.37 × 10−2 | |
537 | 3.00 × 10−6 * | 1.50 × 10−5 * | 6.33 × 10−2 | 9.21 × 10−1 | |
566 | 4.00 × 10−6 * | 6.00 × 10−6 * | 3.37 × 10−2 | 9.21 × 10−1 |
Duncan’s Test, Soil Moisture Content (%) Approximate Likelihood of Post Hoc Tests Error: Between Groups = 36.525, Degrees of Freedom = 193.00 | |||||
---|---|---|---|---|---|
Stand | 366a 12.484 | 366c 14.135 | 507 23.413 | 537 25.043 | 566 21.028 |
366A | 2.27 × 10−1 | 3.00 × 10−6 * | 4.00 × 10−6 * | 1.10 × 10−5 * | |
366C | 2.27 × 10−1 | 1.10 × 10−5 * | 3.00 × 10−6 * | 9.00 × 10−6 * | |
507 | 3.00 × 10−6 * | 1.10 × 10−5 * | 2.33 × 10−1 | 8.12 × 10−2 | |
537 | 4.00 × 10−6 * | 3.00 × 10−6 * | 2.33 × 10−1 | 4.68 × 10−3 * | |
566 | 1.10 × 10−5 * | 9.00 × 10−6 * | 8.12 × 10−2 | 4.68 × 10−3 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudáková, Z.; Allman, M.; Merganič, J.; Merganičová, K. Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia. Forests 2020, 11, 1289. https://doi.org/10.3390/f11121289
Dudáková Z, Allman M, Merganič J, Merganičová K. Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia. Forests. 2020; 11(12):1289. https://doi.org/10.3390/f11121289
Chicago/Turabian StyleDudáková (Allmanová), Zuzana, Michal Allman, Ján Merganič, and Katarína Merganičová. 2020. "Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia" Forests 11, no. 12: 1289. https://doi.org/10.3390/f11121289
APA StyleDudáková, Z., Allman, M., Merganič, J., & Merganičová, K. (2020). Machinery-Induced Damage to Soil and Remaining Forest Stands—Case Study from Slovakia. Forests, 11(12), 1289. https://doi.org/10.3390/f11121289