Atmospheric Pathways and Distance Range Analysis of Castanea Pollen Transport in Southern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Climate
2.2. Phenological Analysis
2.3. Airborne Pollen Monitoring
2.4. Back Trajectory Analysis
3. Results
3.1. Phenological Survey
3.2. Aerobiological Survey
3.3. Air Mass Backward Trajectories and Castanea Pollen Concentrations
3.4. Case Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conedera, M.; Tinner, W.; Krebs, P.; de Rigo, D.; Caudullo, G. Castanea sativa in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; pp. 78–79. ISBN 978-92-79-52833-0. [Google Scholar]
- Goldsbrough, G.H. A Beginners Guide to Chestnut Growing; Hilton Press: Auckland, New Zealand, 1990; p. 40. [Google Scholar]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef] [PubMed]
- CMAOT, Conserjería de Medio Ambiente y Ordenación del Territorio. 2017. Plan Estratégico del Castañar. Available online: http://www.juntadeandalucia.es/medioambiente/portal_web/web/participa/opina_partcipa/plan_estrategico_castanar_sometido_informacion_publica.pdf (accessed on 14 July 2020).
- CAPDR, Consejería de Agricultura, Pesca y Desarrollo Rural. 2018. Estadísticas de Andalucía. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/servicios/estadistica-cartografia/anuarios.html (accessed on 14 July 2020).
- Seijo, F.; Cespedes, B.; Zavala, G. Traditional fire use impact in the aboveground carbon stock of the chestnut forests of Central Spain and its implications for prescribed burning. Sci. Total Environ. 2018, 625, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G.M. The genetic legacy of the Quaternary ice ages. Nat. Cell Biol. 2000, 405, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Official Journal of the European Communities Commission. Decision of 18 December 1996 concerning a site information format for proposed Natura 2000 sites. (97/266/EC). Off. J. L. 1997, 107, 1–156. [Google Scholar]
- Martin, M.A.; Moral, A.; Martin, L.M.; Alvarez, J.B. The Genetic Resources of European Sweet Chestnut (Castanea sativa Miller) in Andalusia, Spain. Genet. Resour. Crop. Evol. 2006, 54, 379–387. [Google Scholar] [CrossRef]
- Martín, M.A.; Alvarez, J.B.; Mattioni, C.; Cherubini, M.; Villani, F.; Martín, L.M. On-farm conservation of sweet chestnut (Castanea sativa Mill.) in Andalusia. J. Agric. Sci. Technol. 2011, 5, 154. [Google Scholar]
- Zotano, J.G. El castañar de Pujerra: Caracterización geohistórica de un paisaje agroforestal singular. Takurunna Anu. Estud. Sobre Ronda Serranía 2011. pp. 74–82, ISSN: 2253-6191. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5651590 (accessed on 14 July 2020).
- Rubio, A. Bases Ecologicas Preliminares Para La Conservacion De Los Tipos De Habitat De Interes Comunitario En España Recurso Electronico; Ministerio Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2009; ISBN 978-84-491-0911-9. [Google Scholar]
- Martín, M.A.; Mattioni, C.; Molina, J.R.; Alvarez, J.B.; Cherubini, M.; Herrera, M.A.; Villani, F.; Martín, L.M. Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genet. Genomes 2011, 8, 127–136. [Google Scholar] [CrossRef]
- Martin, M.A.; Mattioni, C.; Cherubini, M.; Taurchini, D.; Villani, F. Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genet. Genomes 2010, 6, 735–744. [Google Scholar] [CrossRef]
- Giovanetti, M.; Aronne, G. Honeybee interest in flowers with anemophilous characteristics: First notes on handling time and routine on Fraxinus ornus and Castanea sativa. Bull. Insectol. 2011, 64, 77–82, ISSN 1721-8861. [Google Scholar]
- Peeters, A.G.; Zoller, H. Long range transport of Castanea sativa pollen. Grana 1988, 27, 203–207. [Google Scholar] [CrossRef]
- Frei, T. Pollen distribution at high elevation in Switzerland: Evidence for medium range transport. Grana 1997, 36, 34–38. [Google Scholar] [CrossRef]
- Rousseau, D.-D.; Schevin, P.; Ferrier, J.; Jolly, D.; Andreasen, T.; Ascanius, S.E.; Hendriksen, S.-E.; Poulsen, U. Long-distance pollen transport from North America to Greenland in spring. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Rizzi Longo, L.; Pizzulin Sauli, M. Flowering phenology and airborne pollen occurrence of Corylus and Castanea in Trieste (Italy), 1991–2004. Acta Bot. Croat. 2010, 69, 199–214, ISSN 0365–0588. [Google Scholar]
- Hirschwehr, R.; Jager, S.; Horak, F.; Ferreira, F.; Valenta, R.; Ebner, C.; Kraft, D.; Scheiner, O. Allergens from birch pollen and pollen of the European chestnut share common epitopes. Clin. Exp. Allergy 1993, 23, 755–761. [Google Scholar] [CrossRef]
- Kos, T.; Hoffmann-Sommergruber, K.; Ferreira, F.; Hirschwehr, R.; Ahorn, H.; Horak, F.; Jäger, S.; Sperr, W.; Kraft, D.; Scheiner, O. Purification, Characterization and N-Terminal Amino Acid Sequence of a New Major Allergen from European Chestnut Pollen—Cas s 1. Biochem. Biophys. Res. Commun. 1993, 196, 1086–1092. [Google Scholar] [CrossRef]
- Martín, P.C.; Ancillo, A.M.; Noche, C.D.; Vivas, A.G.; Soler, J.B.; Nolla, J.R. Sensibilización a polen de castaño y polinosis en el norte de Extremadura. Allergol. Et Immunopathol. 2005, 33, 145–150. [Google Scholar] [CrossRef]
- Ickovic, M.R.; Thibaudon, M. Allergenic significance of Fagaceae pollen. In Allergenic Pollen and Pollinosis in Europe; Blackwell Science: Oxford, UK, 1991; pp. 36–44. [Google Scholar]
- Sanchezmonge, R.; Blanco, C.; Lopeztorrejon, G.; Cumplido, J.; Recas, M.; Figueroa, J.; Carrillo, T.; Salcedo, G. Differential allergen sensitization patterns in chestnut allergy with or without associated latex-fruit syndrome. J. Allergy Clin. Immunol. 2006, 118, 705–710. [Google Scholar] [CrossRef]
- Skjoth, C.A.; Geels, C.; Hvidberg, M.; Hertel, O.; Brandt, J.; Frohn, L.M.; Hansen, K.M.; Hedegaard, G.B.; Christensen, J.H.; Moseholm, L. An inventory of tree species in Europe—An essential data input for air pollution modelling. Ecol. Model. 2008, 217, 292–304. [Google Scholar] [CrossRef]
- Pauling, A.; Ean, C.T.T.E.A.N.; Rotach, M.W.; Gehrig, R.; Clot, B. A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. Int. J. Biometeorol. 2011, 56, 949–958. [Google Scholar] [CrossRef]
- Sofiev, M.; Belmonte, J.; Gehrig, R.; Izquierdo, R.; Smith, M.; Dahl, Å.; Siljamo, P. Airborne Pollen Transport. In Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts; Sofiev, M., Bergmann, K.-C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 127–159. ISBN 978-94-007-4881-1. [Google Scholar]
- Sofiev, M.; Siljamo, P.; Ranta, H.; Linkosalo, T.; Jaeger, S.; Rasmussen, A.; Rantio-Lehtimaki, A.; Severova, E.; Kukkonen, J. A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int. J. Biometeorol. 2012, 57, 45–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakes Environmental. WRPLOT View Version 8.0: Wind Rose Plots for Meteorological Data. 2018. Available online: http://www.weblakes.com/products/wrplot/index.html (accessed on 11 June 2020).
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Van Den Boom, T. The BBCH system to coding the phenological growth stages of plants–history and publications. J. Für Kult. 2009, 61, 41–52, ISSN 0027-7479. [Google Scholar]
- Hirst, J.M. An Automatic Volumetric Spore Trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Kelly, H.Y.; Dufault, N.S.; Walker, D.R.; Isard, S.A.; Schneider, R.W.; Giesler, L.J.; Wright, D.L.; Marois, J.J.; Hartman, G.L. From Select Agent to an Established Pathogen: The Response to Phakopsora pachyrhizi (Soybean Rust) in North America. Phytopathology 2015, 105, 905–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galán, C.; Cariñanos, P.; Alcázar, P.; Domínguez-Vilches, E. Spanish Aerobiology Network (Rea): Management and Quality Manual; Servicio Publicaciones Universitad Córdoba: Córdoba, Spain, 2007; pp. 1–300. ISBN 978-84-690-6354-5. [Google Scholar]
- Galán, C.; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R.; EAS QC Working Group. Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiology 2014, 30, 385–395. [Google Scholar] [CrossRef]
- Martínez-Bracero, M.; Alcázar, P.; Velasco-Jiménez, M.J.; Calderón-Ezquerro, C.; Galán, C. Phenological and aerobiological study of vineyards in the Montilla-Moriles PDO area, Cordoba, southern Spain. J. Agric. Sci. 2018, 156, 821–831. [Google Scholar] [CrossRef]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended terminology for aerobiological studies. Aerobiology 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Stohl, A. Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ. 1998, 32, 947–966. [Google Scholar] [CrossRef]
- Stunder, B.J.B. An Assessment of the Quality of Forecast Trajectories. J. Appl. Meteorol. 1996, 35, 1319–1331. [Google Scholar] [CrossRef]
- Draxler, R.; Stunder, B.; Rolph, G.; Stein, A.; Taylor, A. Hysplit4 User’s Guide; NOAA Air Resources Laboratory: College Park, MD, USA, 2018. [Google Scholar]
- Hjelmroos, M.; Franzén, L.G. Implications of recent long-distance pollen transport events for the interpretation of fossil pollen records in Fennoscandia. Rev. Palaeobot. Palynol. 1994, 82, 175–189. [Google Scholar] [CrossRef]
- Brugiapaglia, E.; De Beaulieu, J.-L.; Guiot, J.; Reille, M. Transect de pluie pollinique et étagement de la végétation dans le massif du Taillefer (Isère, France). Géographie Phys. Et Quat. 2002, 52, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Jochimsen, M. Problem des Pollenfluqes in den Hochalpen; Lubrecht & Cramer Ltd.: Edinburgh, UK, 1986; p. 249. [Google Scholar]
- Halse, R.R. Nomenclature of allergenic plants. I. Ann. Allergy 1984, 53, 291–309, ISSN: 0003-4738. [Google Scholar] [PubMed]
- Jäger, S.; Litschaner, R. Aerobiological survey on Castanea pollen in Austria. In Proceedings of the International Symposium Castanea sativa Allergies and Plant Diseases, Lugano, Switzerland, 16–18 September 1999. [Google Scholar]
- Cabezudo, B.; Criado, M.R.; Sanchez-Laulhe, J.M.; Trigo, M.D.M.; Toro, F.J.; Polvorinos, F. Atmospheric transportation of marihuana pollen from North Africa to the Southwest of Europe. Atmos. Environ. 1997, 31, 3323–3328. [Google Scholar] [CrossRef] [Green Version]
- Hrga, I.; Mitić, B.; Alegro, A.; Dragojlović, D.; Stjepanović, B.; Puntarić, D. Aerobiology of Sweet Chestnut (Castanea sativa Mill.) in North-West Croatia. Coll. Antropol. 2010, 34, 501–507. [Google Scholar]
- Jato, V.; Rodríguez-Rajo, F.J.; Aira, M.J.; Tedeschini, E.; Frenguelli, G. Differences in atmospheric trees pollen seasons in winter, spring and summer in two European geographic areas, Spain and Italy. Aerobiology 2012, 29, 263–278. [Google Scholar] [CrossRef]
- Astray, G.; Fernández-González, M.; Rodríguez-Rajo, F.; López, D.; Mejuto, J. Airborne Castanea pollen forecasting model for ecological and allergological implementation. Sci. Total Environ. 2016, 676, 110–121. [Google Scholar] [CrossRef]
- González-Naharro, R.; Quirós, E.; Fernández-Rodríguez, S.; Silva-Palacios, I.; Maya-Manzano, J.M.; Tormo-Molina, R.; Pecero-Casimiro, R.; Monroy-Colin, A.; Gonzalo-Garijo, Á. Relationship of NDVI and oak (Quercus) pollen including a predictive model in the SW Mediterranean region. Sci. Total Environ. 2019, 676, 407–419. [Google Scholar] [CrossRef]
- Monroy-Colín, A.; Maya-Manzano, J.M.; Tormo-Molina, R.; Pecero-Casimiro, R.; Gonzalo-Garijo, M.Á.; Fernández-Rodríguez, S. HYSPLIT as an environmental impact assessment tool to study the data discrepancies between Olea europaea airborne pollen records and its phenology in SW Spain. Urban For. Urban Green. 2020, 53, 126715. [Google Scholar] [CrossRef]
- García-Mozo, H.; Hernández-Ceballos, M.A.; Trigo, M.; Galán, C. Wind dynamics’ influence on south Spain airborne olive-pollen during African intrusions. Sci. Total Environ. 2017, 609, 1340–1348. [Google Scholar] [CrossRef]
- Hernández-Ceballos, M.A.; Adame, J.; Bolívar, J.; De La Morena, B. A mesoscale simulation of coastal circulation in the Guadalquivir valley (southwestern Iberian Peninsula) using the WRF-ARW model. Atmos. Res. 2013, 124, 1–20. [Google Scholar] [CrossRef]
- Hernández-Ceballos, M.A.; Soares, J.; García-Mozo, H.; Sofiev, M.; Bolivar, J.; Galan, C. Analysis of atmospheric dispersion of olive pollen in southern Spain using SILAM and HYSPLIT models. Aerobiology 2013, 30, 239–255. [Google Scholar] [CrossRef]
- Hernández-Ceballos, M.A.; García-Mozo, H.; Galan, C. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain. Int. J. Biometeorol. 2014, 59, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Bogawski, P.; Borycka, K.; Grewling, Ł.; Kasprzyk, I. Detecting distant sources of airborne pollen for Poland: Integrating back-trajectory and dispersion modelling with a satellite-based phenology. Sci. Total Environ. 2019, 689, 109–125. [Google Scholar] [CrossRef]
- Celenk, S. Detection of reactive allergens in long-distance transported pollen grains: Evidence from Ambrosia. Atmos. Environ. 2019, 209, 212–219. [Google Scholar] [CrossRef]
- Ghasemifard, H.; Ghada, W.; Estrella, N.; Lüpke, M.; Oteros, J.; Traidl-Hoffmann, C.; Damialis, A.; Buters, J.; Menzel, A. High post-season Alnus pollen loads successfully identified as long-range transport of an alpine species. Atmos. Environ. 2020, 231, 117453. [Google Scholar] [CrossRef]
- Hernández-Ceballos, M.A.; García-Mozo, H.; Adame, J.A.; Domínguez-Vilches, E.; De La Morena, B.A.; Bolívar, J.P.; Galán, C. Synoptic and meteorological characterisation of olive pollen transport in Córdoba province (south-western Spain). Int. J. Biometeorol. 2010, 55, 17–34. [Google Scholar] [CrossRef]
- Rojo, J.; Pérez-Badia, R. Spatiotemporal analysis of olive flowering using geostatistical techniques. Sci. Total Environ. 2015, 505, 860–869. [Google Scholar] [CrossRef]
- Hernández-Ceballos, M.A.; García-Mozo, H.; Adame, J.A.; Domínguez-Vilches, E.; Bolívar, J.P.; De La Morena, B.A.; Pérez-Badía, R.; Galán, C. Determination of potential sources of Quercus airborne pollen in Córdoba city (southern Spain) using back-trajectory analysis. Aerobiology 2011, 27, 261–276. [Google Scholar] [CrossRef]
- Bounous, G. The Chestnut: A Multipurpose Resource for The New Millennium. Acta Hortic. 2005, 13, 33–40. [Google Scholar] [CrossRef]
- Krebs, P.; Conedera, M.; Pradella, M.; Torriani, D.; Felber, M.; Tinner, W. Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): An extended palynological approach. Veg. Hist. Archaeobotany 2004, 13, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Mattioni, C.; Martin, M.A.; Pollegioni, P.; Cherubini, M.; Villani, F. Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): Evidence for multiple glacial refugia. Am. J. Bot. 2013, 100, 951–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
2015 | 2016 | 2017 | 2019 |
---|---|---|---|
21 June | 13 July * | 21 June | 23 June * |
23 June | 5 August * | 5 July * | 29 June * |
29 June * | 8 August * | 14 July * | 2 July * |
8 August * | 15 August * | 28 July * | 12 July * |
27 September * | 19 August * | 22 August * | 23 August * |
29 September * | 8 November * | 6 September * | 17 September * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Orozco, R.; Hernández-Ceballos, M.Á.; Galán, C.; García-Mozo, H. Atmospheric Pathways and Distance Range Analysis of Castanea Pollen Transport in Southern Spain. Forests 2020, 11, 1092. https://doi.org/10.3390/f11101092
López-Orozco R, Hernández-Ceballos MÁ, Galán C, García-Mozo H. Atmospheric Pathways and Distance Range Analysis of Castanea Pollen Transport in Southern Spain. Forests. 2020; 11(10):1092. https://doi.org/10.3390/f11101092
Chicago/Turabian StyleLópez-Orozco, Rocío, Miguel Ángel Hernández-Ceballos, Carmen Galán, and Herminia García-Mozo. 2020. "Atmospheric Pathways and Distance Range Analysis of Castanea Pollen Transport in Southern Spain" Forests 11, no. 10: 1092. https://doi.org/10.3390/f11101092
APA StyleLópez-Orozco, R., Hernández-Ceballos, M. Á., Galán, C., & García-Mozo, H. (2020). Atmospheric Pathways and Distance Range Analysis of Castanea Pollen Transport in Southern Spain. Forests, 11(10), 1092. https://doi.org/10.3390/f11101092