Machine Learning Models with Quantitative Wood Anatomy Data Can Discriminate between Swietenia macrophylla and Swietenia mahagoni
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Specimens
2.2. Quantitative Characters
2.3. Statistical Analysis
3. Results
3.1. Quantitative Wood Anatomy Data
3.2. Machine Learning Classifiers for Discrimination between the Three Swietenia Species
3.3. Machine Learning Classifiers for Discrimination of S. mahagoni and S. macrophylla
4. Discussion
4.1. Intra- and Inter-Species Variations of the Three Swietenia Species
4.2. Discrimination between the Three Swietenia Species
4.3. Evaluation of Machine Learning Methods for Wood Identification
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dormontt, E.E.; Boner, M.; Braun, B.; Breulmann, G.; Degen, B.; Espinoza, E.; Gardner, S.; Guillery, P.; Hermanson, J.C.; Koch, G.; et al. Forensic timber identification: it’s time to integrate disciplines to combat illegal logging. Biol. Conserv. 2015, 191, 790–798. [Google Scholar] [CrossRef]
- Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing human dominance of tropical forests. Science 2015, 349, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.K.S.; Lee, S.L.; Tnah, L.H.; Nurul-Farhanah, Z.; Ng, H.C.; Lee, T.C.; Tani, N.; Diway, B.; Sing, L.P.; Khoo, E. Forensic timber identification: A case study of a CITES listed species, Gonystylus bancanus (Thymelaeaceae). Forensic Sci. Int. Genet. 2016, 23, 197–209. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office on Drug and Crime. Best Practice Guide for Forensic Timber Identification; Laboratory and Scientific Section, Global Programme for Combating Wildlife and Forest Crime: Vienna, Austria; New York, NY, USA, 2016; pp. 1–226. Available online: https://www.unodc.org/documents/Wildlife/Guide_Timber.pdf (accessed on 24 August 2016).
- Brancalion, P.H.S.; Almeida, D.R.A.; Vidal, E.; Molin, P.G.; Sontag, V.E.; Souza, S.E.X.F.; Schulze, M. Fake legal logging in the Brazilian Amazon. Sci. Adv. 2018, 4, 1192. [Google Scholar] [CrossRef] [Green Version]
- Baas, P. CITES and timbers- a guide to CITES listed tree species. IAWA J. 2017, 38, 135–136. [Google Scholar] [CrossRef]
- Dünisch, O.; Montóia, V.R.; Bauch, J. Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 2003, 17, 244–250. [Google Scholar] [CrossRef]
- Grogan, J.; Barreto, P. Big-leaf mahogany on CITES appendix II: Big challenge, big opportunity. Conserv. Biol. 2005, 19, 973–976. [Google Scholar]
- Ovalle-Magallanes, B.; Madariaga-Mazon, A.; Navarrete, A.; Mata, R. Mechanisms of action of antihyperglycemic mexicanolides isolated from Swietenia humillis: In vivo and in silico approaches. Planta Med. 2016, 82, 136. [Google Scholar] [CrossRef]
- Panshin, A.J. Comparative anatomy of the woods of the Meliaceae, sub-family Swietenioideae. Am. J. Bot. 1933, 20, 638–668. [Google Scholar] [CrossRef]
- Gasson, P. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA J. 2011, 32, 137–154. [Google Scholar] [CrossRef]
- Gasson, P.; Baas, P.; Wheeler, E. Wood anatomy of CITES-listed tree species. IAWA J. 2011, 32, 155–197. [Google Scholar] [CrossRef]
- Ruffinatto, F.; Crivellaro, A.; Wiedenhoeft, A.C. Review of macroscopic features for hardwood and softwood identification and a proposal for a new character list. IAWA J. 2015, 36, 208–241. [Google Scholar] [CrossRef] [Green Version]
- Bergo, M.C.J.; Pastore, T.C.M.; Coradin, V.T.R.; Wiedenhoeft, A.C.; Braga, J.W.B. NIRS identification of Swietenia macrophylla is robust across specimens from 27 countries. IAWA J. 2016, 37, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Wiedenhoeft, A.C.; Simeone, J.; Smith, A.; Parker-Forney, M.; Soares, R.; Fishman, A. Fraud and misrepresentation in retail forest products exceeds U.S. forensic wood science capacity. PLoS ONE 2019, 14, e0219917. [Google Scholar] [CrossRef] [PubMed]
- Pastore, T.C.M.; Braga, J.W.B.; Coradin, V.T.R.; Magalhães, W.L.E.; Okino, E.Y.A.; Camargos, J.A.A.; de Muñiz, G.I.B.; Bressan, O.A.; Davrieux, F. Near infrared spectroscopy (NIRS) as a potential tool for monitoring trade of similar woods: Discrimination of true mahogany, cedar, andiroba, and curupixá. Holzforschung 2010, 65, 73–80. [Google Scholar] [CrossRef]
- Braga, J.W.B.; Pastore, T.C.M.; Coradin, V.T.R.; Camargos, J.A.A.; Silva, A.R. The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (CITES Appendix II). IAWA J. 2011, 32, 285–296. [Google Scholar] [CrossRef]
- Snel, F.A.; Braga, J.W.B.; Silva, D.; Wiedenhoeft, A.C.; Costa, A.; Soares, R.; Coradin, V.T.R.; Pastore, T.C.M. Potential field-deployable NIRS identification of seven Dalbergia species listed by CITES. Wood Sci. Technol. 2018, 52, 1411–1427. [Google Scholar] [CrossRef] [Green Version]
- Cody, R.B.; Dane, A.J.; Andoh, B.J.; Adedipe, E.O.; Nkansahb, K. Rapid classification of white oak (Quercus alba) and Northern red oak (Quercus rubra) by using pyrolysis direct analysis in real time (DART™) and time-of-flight mass spectrometry. J. Anal. Appl. Pyrolysis 2012, 95, 134–137. [Google Scholar] [CrossRef]
- Lancaster, C.; Espinoza, E.O. Analysis of select Dalbergia and trade timber using direct analysis in real time and time-of-flight mass spectrometry for CITES enforcement. Rapid Commun. Mass Spectrom. 2012, 26, 1147–1156. [Google Scholar] [CrossRef]
- Espinoza, E.O.; Wiemann, M.C.; Morales, J.B.; Chavarria, G.D.; McClure, P.J. Forensic analysis of CITES-protected Dalbergia timber from the Americas. IAWA J. 2015, 36, 311–325. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.; Liu, B.; He, T.; Guo, J.; Jiang, X.; Yin, Y. Wood discrimination analyses of Pterocarpus tinctorius and endangered Pterocarpus santalinus using DART-FTICR-MS coupled with multivariate statistics. IAWA J. 2019, 40, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.K.; Kobayashi, K.; Zhai, S.; Sugiyama, J. Automated identification of Lauraceae by scale-invariant feature transform. J. Wood Sci. 2017, 64, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, I.; Khairuddin, A.S.M.; Arof, H.; Yusof, R.; Hanafi, E. Statistical feature extraction methods for wood recognition system. Euro. J. Wood Prod. 2018, 76, 345–356. [Google Scholar] [CrossRef]
- Ravindran, P.; Costa, A.; Soares, R.; Wiedenhoeft, A.C. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Meth. 2018, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- White, G.; Powell, W. Isolation and characterization of microsatellite loci in Swietenia humilis (Meliaceae): An endangered tropical hardwood species. Mol. Ecol. 2008, 6, 851–860. [Google Scholar] [CrossRef]
- Muellner, A.N.; Schaefer, H.; Lahaye, R. Evaluation of candidate DNA barcoding loci for economically important timber species of the mahogany family (Meliaceae). Mol. Ecol. Resour. 2011, 11, 450–460. [Google Scholar] [CrossRef]
- Höltken, A.M.; Schröder, H.; Wischnewski, H.; Degen, B.; Magel, E.; Fladung, M. Development of DNA based methods to identify CITES-protected timber species: A case study in the Meliaceae family. Holzforschung 2012, 66, 97–104. [Google Scholar]
- Hartvig, I.; Czako, M.; Kjær, E.D.; Nielsen, L.R.; Theilade, I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS ONE 2015, 10, e0138231. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Jiao, L.; Guo, J.; Wiedenhoeft, A.C.; He, T.; Jiang, X.; Yin, Y. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta 2017, 246, 1165–1176. [Google Scholar] [CrossRef]
- Jiao, L.; Yu, M.; Wiedenhoeft, A.C.; He, T.; Li, J.; Liu, B.; Jiang, X.; Yin, Y. DNA barcode authentication and library development for the wood of six commercial Pterocarpus species: The critical role of Xylarium specimens. Sci. Rep. 2018, 8, 1945. [Google Scholar] [CrossRef]
- He, T.; Jiao, L.; Wiedenhoeft, A.C.; Yin, Y. Machine learning approaches outperform distance- and tree-based methods for DNA barcoding of Pterocarpus wood. Planta 2019, 249, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Ugochukwu, A.; Hobbs, J.; Phillips, P.; Kerr, W. Technological solutions to authenticity issues in international trade: The case of CITES listed endangered species. Ecol. Econ. 2018, 146, 730–739. [Google Scholar] [CrossRef]
- Wheeler, E.A.; Bass, P.; Rodgers, S. Variations in dicot wood anatomy: A global analysis based on the insidewood database. IAWA J. 2007, 28, 229–258. [Google Scholar] [CrossRef]
- Koch, G.; Haag, V.; Heinz, I.; Richter, H.; Schmitt, U. Control of international traded timber-the role of macroscopic and microscopic wood identification against illegal logging. J. Forensic Res. 2016, 6, 317. [Google Scholar]
- Gasson, P.; Miller, R.; Stekel, D.J.; Whinder, F.; Ziemińska, K. Wood identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and Naïve Bayes classification. Ann. Bot. 2010, 105, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, A.J.; Dormontt, E.E.; Bowie, M.J.; Degen, B.; Gardner, S.; Thomas, D.; Clarke, C.; Rimbawanto, A.; Wiedenhoeft, A.; Yin, Y.; et al. Opportunities for improved transparency in the timber trade through scientific verification. Bioscience 2016, 66, 990–998. [Google Scholar] [CrossRef]
- Von-Arx, G.; Crivellaro, A.; Prendin, A.L.; Čufar, K.; Carrer, M. Quantitative wood anatomy-practical guidelines. Front. Plant Sci. 2016, 7, 781. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, T. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 2001, 42, 177–196. [Google Scholar] [CrossRef]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Net. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Filho, P.L.P.; Oliveira, L.S.; Nisgoski, S.; Britto, J.A.S. Forest species recognition using macroscopic images. Mach. Vis. Appl. 2014, 25, 1019–1031. [Google Scholar] [CrossRef]
- He, T.; Jiao, L.; Yu, M.; Guo, J.; Jiang, X.; Yin, Y. DNA barcoding authentication for the wood of eight endangered Dalbergia timber species using machine learning approaches. Holzforschung 2018, 73, 277–285. [Google Scholar] [CrossRef]
- Wiedenhoeft, A.C.; Arévalo, R.; Ledbetter, C.; Jakes, J.E. Structure-property characterization of the crinkle-leaf peach wood phenotype: A future model system for wood properties research? JOM 2016, 68, 2405–2412. [Google Scholar] [CrossRef]
- IAWA Committee. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989, 10, 219–332. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, P.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Meth. 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Quinlan, R. C50:C5.0 Decision Trees and Rule-Based Models. Available online: https://CRAN.R-project.org/package=C50 (accessed on 15 December 2018).
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 15 December 2018).
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab-An S4 package for kernel methods in R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with R; Springer: New York, NY, USA, 2002. [Google Scholar]
- Gupta, B.; Rawat, A.; Jain, A. Analysis of various decision tree algorithms for classification in data mining. Int. Comput. Appl. 1997, 27, 5–44. [Google Scholar] [CrossRef]
- Lewis, D.D. Naive (Bayes) at forty: The independence assumption in information retrieval. Mach. Learn. 1998, 98, 4–15. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Proc. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Jiang, J.; Trundle, P.; Ren, J. Medical image analysis with artificial neural networks. Comput. Med. Imaging Graph. 2010, 34, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Tyree, M.T. The impact of vessel size on vulnerability curves: Data and models for with-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ. 2010, 33, 1059–1069. [Google Scholar] [CrossRef]
- Wiedenhoeft, A.C.; Baas, P. Wood science for promoting legal timber harvest. IAWA J. 2011, 32, 121–297. [Google Scholar]
- Li, S.; Link, R.; Li, R.; Deng, L.; Schuldt, B.; Jiang, X.; Zhao, R.; Zheng, J.; Li, S.; Yin, Y. Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China. Forests 2019, 10, 662. [Google Scholar] [CrossRef] [Green Version]
- Lemes, M.R.; Gribel, R.; Proctor, J.; Grattapaglia, D. Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: Implications for conservation. Mol. Ecol. 2003, 12, 2875–2883. [Google Scholar] [CrossRef]
- Degen, B.; Ward, S.E.; Lemes, M.R.; Navarro, C.; Cavers, S.; Sebbenn, A.M. Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints. Forensic Sci. Int. Genet. 2013, 7, 55–62. [Google Scholar] [CrossRef]
- Arévalo, R.; Ee, B.W.; Riina, R.; Berry, P.E.; Wiedenhoeft, A.C. Force of habit: Shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system. Ann. Bot. 2017, 119, 563–579. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Zhang, H.H.; Wang, X. Machine learning for Big Data analysis. Trends Plant Sci. 2015, 19, 798–808. [Google Scholar] [CrossRef]
- Deklerck, V.; Mortier, T.; Goeders, N.; Cody, R.B.; Waegeman, W.; Espinoza, E.; Acker, J.V.; Bulcke, J.V.; Beeckman, H. A protocol for automated timber species identification using metabolome profiling. Wood Sci. Technol. 2019, 53, 953–965. [Google Scholar] [CrossRef]
- Esteban, L.G.; Fernández, F.G.; Palacios, P.; Romero, R.M.; Cano, N.N. Artificial neural networks in wood identification: The case of two Juniperus species from the Canary Islands. IAWA J. 2009, 30, 87–94. [Google Scholar] [CrossRef]
- Esteban, L.G.; Palacios, P.; Conde, M.; Fernández, F.G.; García-Iruela, A.; González-Alonso, M. Application of artificial neural networks as a predictive method to differentiate the wood of Pinus sylvestris L. and Pinus nigra Arn subsp. salzmannii (Dunal) Franco. Wood Sci. Technol. 2017, 51, 1249–1258. [Google Scholar] [CrossRef]
- Mallik, A.; Saavedra, J.T.; Fernández, M.F.; Naya, S. Classification of wood micrographs by image segmentation. Chem. Intell. Lab. Syst. 2011, 107, 351–362. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.; Qi, H. Wood recognition using image texture features. PLoS ONE 2013, 8, e76101. [Google Scholar] [CrossRef] [Green Version]
- Weitschek, E.; Fiscon, G.; Felici, G. Supervised DNA barcodes species classification: Analysis, comparisons and results. BioData Min. 2014, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- More, R.P.; Mane, R.C.; Purohit, H.C. MatK-QR classifier: A patterns based approach for plant species identification. BioData Min. 2016, 9, 39. [Google Scholar] [CrossRef] [Green Version]
Wood Features | Abbreviation | Definitions |
---|---|---|
Vessel element length | VEL | Mean vessel element length (n = 25); tails were included in the measurement |
Fiber length | FL | Mean fiber length (n = 50) |
Fiber to vessel ratio | F/V | FL to VEL ratio |
Tangential vessel diameter | TVD | Mean tangential diameter of vessels (n = 50); measured at the widest point of a vessel and including the vessel wall. To select which vessels would be measured we used a grid (a single diagonal line). |
Frequency of vessels | FOV | Mean number of vessels found in 1 mm2 |
Rays per linear mm | RPMM | The count of all rays in five fields of view crossed by a 2 mm line seen through an ocular micrometer (10 mm total, as described in the IAWA list of microscopic features). Only rays entirely in the field of view were measured. |
Ray height | RHEIGHT | Mean ray height in µm. |
Ray width | RWIDTH | Mean ray width in µm |
Ray area index | RAI | Sum of the product of mean ray height × mean ray width × mean number of rays per mm of each ray width category, divided by 100,000 µm2 |
Wood Features | S. humilis | S. macrophylla | S. mahagoni |
---|---|---|---|
Vessel element length (µm) | 439 ± 62 a | 513 ± 72 b | 419 ± 59 a |
Fiber length (µm) | 1217 ± 119 a | 1312 ± 142 b | 1135 ± 173 ab |
Fiber-to-vessel ratio | 2.8 ± 0.3 a | 2.5 ± 0.3 b | 2.7 ± 0.3 a |
Tangential vessel diameter (µm) | 144 ± 19 a | 153 ± 21 a | 124 ± 18 b |
Frequency of vessels | 9.7 ± 3 a | 8.3 ± 2.6 a | 11.6 ± 3.5 b |
Rays per linear mm | 5.1 ± 0.7 a | 5.4 ± 0.8 a | 5.9 ± 0.8 b |
Ray height (µm) | 52 ± 10 a | 47 ± 10 b | 52 ± 11 ab |
Ray width (µm) | 331 ± 59 a | 390 ± 70 b | 306 ± 54 a |
Ray area index | 0.86 ± 0.24 a | 0.99 ± 0.29 a | 0.93 ± 0.29 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Marco, J.; Soares, R.; Yin, Y.; Wiedenhoeft, A.C. Machine Learning Models with Quantitative Wood Anatomy Data Can Discriminate between Swietenia macrophylla and Swietenia mahagoni. Forests 2020, 11, 36. https://doi.org/10.3390/f11010036
He T, Marco J, Soares R, Yin Y, Wiedenhoeft AC. Machine Learning Models with Quantitative Wood Anatomy Data Can Discriminate between Swietenia macrophylla and Swietenia mahagoni. Forests. 2020; 11(1):36. https://doi.org/10.3390/f11010036
Chicago/Turabian StyleHe, Tuo, João Marco, Richard Soares, Yafang Yin, and Alex C. Wiedenhoeft. 2020. "Machine Learning Models with Quantitative Wood Anatomy Data Can Discriminate between Swietenia macrophylla and Swietenia mahagoni" Forests 11, no. 1: 36. https://doi.org/10.3390/f11010036
APA StyleHe, T., Marco, J., Soares, R., Yin, Y., & Wiedenhoeft, A. C. (2020). Machine Learning Models with Quantitative Wood Anatomy Data Can Discriminate between Swietenia macrophylla and Swietenia mahagoni. Forests, 11(1), 36. https://doi.org/10.3390/f11010036