Development and Testing of a New Ground Measurement Tool to Assist in Forest GIS Surveys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. The Ground Measurement Tool
2.3. Expand Traditional Forest GIS Survey Functions
2.4. Measure DBH and Standing Tree Height
2.4.1. Algorithm for Extracting DBH and Tree Height by Terrestrial Photogrammetry Based on the Mobile Phone
2.4.2. Software Development for Analyzing DBH and Tree Height of Standing Trees Based on Terrestrial Photogrammetry
2.5. Deep Learning Assisted Artificial Identification of Tree Species
2.5.1. Tree Species Recognition Model Based on MobileNets
2.5.2. Tree Species Identification Based on the Mobile Phone
2.6. Testing the Accuracy of the Survey Made Using the Ground Measurement Tool
3. Results
3.1. Experiment and Analysis of the Measurements of Tree Position
3.2. Experiment and Analysis of Measuring DBH and Tree Height
3.3. Tree Species Identification Experiment and Analysis
3.4. Comparison of Two Working Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Rosset, C. MOTI, les inventaires forestiers dans la poche. For. Entrep. 2015, 220, 30–33. [Google Scholar]
- Rosset, C.; Brand, R.; Caillard, I.; Fiedler, U.; Gollut, C.; Schmocker, A.; Weber, D.; Wuillemin, E.; Dumollard, G. MOTI-L’inventaire Forestier Facilité par le Smartphone; Haute École des Sciences Agronomiques, Forestières et Alimentaires HAFL: Zollikofen, Switzerland, 2014. [Google Scholar]
- Vopenka, P.; Cerny, M. GIS aided Statistical Forest Inventory in Transcarpathia, Ukraine; Esri: Redlands, CA, USA, 2006. [Google Scholar]
- Li, C.; Jiang, Y. Development of mobile GIS system for forest resources second-class inventory. J. For. Res. 2011, 22, 263–268. [Google Scholar] [CrossRef]
- Kaartinen, H.; Hyyppä, J.; Vastaranta, M.; Kukko, A.; Jaakkola, A.; Yu, X.; Pyörälä, J.; Liang, X.; Liu, J.; Wang, Y.; et al. Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies. Forests 2015, 6, 3218–3236. [Google Scholar] [CrossRef]
- Jaakkola, A.; Hyyppä, J.; Kukko, A.; Yu, X.; Kaartinen, H.; Lehtomäki, M.; Lin, Y. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J. Photogramm. Remote Sens. 2010, 65, 514–522. [Google Scholar] [CrossRef]
- Cai, G.L.; Song, X.D.; Zhang, A.L.; Yang, J. Development of the embedded spatial data acquisition system based on smart phones. Remote Sens. Land Resour. 2015, 3, 182–187. [Google Scholar]
- McRoberts, R.E.; Tomppo, E.; Schadauer, K.; Vidal, C.; Ståhl, G.; Chirici, G.; Lanz, A.; Cienciala, E.; Winter, S.; Smith, W.B. Harmonizing National Forest Inventories. J. For. 2009, 107, 179–187. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppa, J.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Yu, X. The Use of a Mobile Laser Scanning System for Mapping Large Forest Plots. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1504–1508. [Google Scholar] [CrossRef]
- Bakula, M.; Przestrzelski, P.; Kazmierczak, R. Reliable Technology of Centimeter GPS/GLONASS Surveying in Forest Environments. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1029–1038. [Google Scholar] [CrossRef]
- Kangas, A.; Rasinmäki, J.; Eyvindson, K.; Chambers, P. A mobile phone application for the collection of opinion data for forest planning purposes. Environ. Manag. 2015, 55, 961–971. [Google Scholar] [CrossRef]
- Forsman, P.; Halme, A. 3-D mapping of natural environments with trees by means of mobile perception. IEEE Trans. Robot. 2005, 21, 482–490. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Minghini, M.; Zamboni, G. Public participation in GIS via mobile applications. ISPRS J. Photogramm. Remote Sens. 2016, 114, 306–315. [Google Scholar] [CrossRef]
- Mikita, T.; Janata, P.; Surový, P. Forest Stand Inventory Based on Combined Aerial and Terrestrial Close-Range Photogrammetry. Forests 2016, 7, 165. [Google Scholar] [CrossRef]
- Han, D. Standing tree volume measurement technology based on digital image processing. In Proceedings of the International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), Xiamen, China, 3–5 March 2012; pp. 1922–1925. [Google Scholar]
- Qiu, Z.; Feng, Z.; Jiang, J.; Lin, Y.; Xue, S. Application of a Continuous Terrestrial Photogrammetric Measurement System for Plot Monitoring in the Beijing Songshan National Nature Reserve. Remote Sens. 2018, 10, 1080. [Google Scholar] [CrossRef]
- Gaffrey, D.; Sloboda, B.; Fabrika, M.; Smelko, S. Terrestrial single-photogrammetry for measuring standing trees, as applied in the Dobroc virgin forest. J. For. Sci.-UZPI (Czech Reoublic) 2001, 47, 75–87. [Google Scholar]
- Guo, L.; Luo, J.; Yuan, M.; Huang, Y.; Shen, H.; Li, T. The influence of urban planning factors on PM2.5 pollution exposure and implications: A case study in China based on remote sensing, LBS, and GIS data. Sci. Total Environ. 2019, 659, 1585–1596. [Google Scholar] [CrossRef]
- Molinier, M.; López-Sánchez, C.; Toivanen, T.; Korpela, I.; Corral-Rivas, J.; Tergujeff, R.; Häme, T. Relasphone—Mobile and Participative In Situ Forest Biomass Measurements Supporting Satellite Image Mapping. Remote Sens. 2016, 8, 869. [Google Scholar] [CrossRef]
- Bauwens, S.; Fayolle, A.; Gourlet-Fleury, S.; Ndjele, L.M.; Mengal, C.; Lejeune, P. Terrestrial photogrammetry: A non-destructive method for modelling irregularly shaped tropical tree trunks. Methods Ecol. Evol. 2017, 8, 460–471. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Z.; Yang, L.; Mannan, A.; Khan, T.U.; Zhao, Z.; Cheng, Z. Extraction of Sample Plot Parameters from 3D Point Cloud Reconstruction Based on Combined RTK and CCD Continuous Photography. Remote Sens. 2018, 10, 1299. [Google Scholar] [CrossRef]
- Nie, W. Research on the Methods of Close-Range Photogrammetry Measuring Tree Base on Single Photo; Beijing Forestry University: Beijing, China, 2009. [Google Scholar]
- Berveglieri, A.; Tommaselli, A.; Liang, X.; Honkavaara, E. Photogrammetric measurement of tree stems from vertical fisheye images. Scand. J. For. Res. 2017, 32, 737–747. [Google Scholar] [CrossRef]
- Crosby, P.; Barrett, J.P.; Bocko, R. Photo Estimates of Upper Stem Diameters. J. For. 1983, 81, 795–797. [Google Scholar]
- Dean, C. Calculation of wood volume and stem taper using terrestrial single-image close-range photogrammetry and contemporary software tools. Silva Fenn. 2003, 37, 359–380. [Google Scholar] [CrossRef]
- Han, D.; Wang, C. Tree height measurement based on image processing embedded in smart mobile phone. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 3293–3296. [Google Scholar]
- Zhou, K.; Wang, Y.; Li, J.; Jiang, G.; Xu, A. Research and implementation of tree measurement system based on Android platform. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2016, 40, 95–100. [Google Scholar]
- Han, D. Research on Leaf Area and Standings Measurement Algorithms Based on Image Analysis Embedded in Smart; Beijing Forestry University: Beijing, China, 2013. [Google Scholar]
- Mokroš, M.; Výbošťok, J.; Tomaštík, J.; Grznárová, A.; Valent, P.; Slavík, M.; Merganič, J. High Precision Individual Tree Diameter and Perimeter Estimation from Close-Range Photogrammetry. Forests 2018, 9, 696. [Google Scholar] [Green Version]
- Cheng, P.; Liu, J.; Wang, D. Measuring method of standing tree DBH based on laser and machine vision. J. Agric. Mach. 2013, 44, 271–275. [Google Scholar]
- Kong, F.; Tan, J. DietCam: Automatic dietary assessment with mobile camera phones. Pervasive Mob. Comput. 2012, 8, 147–163. [Google Scholar] [CrossRef]
- Tao, J.; Zhai, R.; Zhang, Z.; Zhang, J. Calibration of a Projector with a Planar Gird. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 34, 5. [Google Scholar]
- Abdel-Aziz, Y.I.; Karara, H.M.; Hauck, M. Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry. Photogramm. Eng. Remote Sens. 2015, 81, 103–107. [Google Scholar] [CrossRef]
- Yi, C. New computation method of collinearity equation suiting digital photogrammetry. J. Tongji Univ. 2004, 32, 660–663. [Google Scholar]
- Luhmann, T.; Robson, S.; Kyle, S.; Harley, I. Close Range Photogrammetry; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-10633-4. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv 2017, arXiv:1704.04861. [Google Scholar]
- Su, J.; Faraone, J.; Liu, J.; Zhao, Y.; Thomas, D.B.; Leong, P.H.W.; Cheung, P.Y.K. Redundancy-Reduced MobileNet Acceleration on Reconfigurable Logic for ImageNet Classification. In International Symposium on Applied Reconfigurable Computing, Proceedings of the Applied Reconfigurable Computing. Architectures, Tools, and Applications, Santorini, Greece, 2–4 May 2018; Voros, N., Huebner, M., Keramidas, G., Goehringer, D., Antonopoulos, C., Diniz, P.C., Eds.; Springer International Publishing: Berlin, Germany, 2018; pp. 16–28. [Google Scholar]
- Huang, X.; Feng, Z.; Xie, M.; Chen, J.; Liu, J. Development and accuracy analysis of portable devices for automatic measurement of breast diameter and tree height. Trans. Chin. Soc. Agric. Eng. 2015, 31, 92–99. [Google Scholar]
- Huang, X. Study on the Acquisition of Tree Measurement Factors by Ground Photogrammetry; Beijing Forestry University: Beijing, China, 2016. [Google Scholar]
- Fan, Y.; Feng, Z.; Mannan, A.; Khan, T.U.; Shen, C.; Saeed, S. Remote sensing Estimating Tree Position, Diameter at Breast Height, and Tree Height in Real-Time Using a Mobile Phone with RGB-D SLAM. Remote Sens. 2018, 10, 1845. [Google Scholar] [CrossRef]
- Kennedy, R.; McLeman, R.; Sawada, M.; Smigielski, J. Use of Smartphone Technology for Small-Scale Silviculture: A Test of Low-Cost Technology in Eastern Ontario. Small-Scale For. 2014, 13, 101–115. [Google Scholar] [CrossRef]
- Olyazadeh, R.; Sudmeier-Rieux, K.; Jaboyedoff, M.; Derron, M.-H.; Devkota, S. An Offline-Online WebGIS Android Application for Fast Data Acquisition of Landslide Hazard and Risk. Nat. Hazards Earth Syst. Sci. Discuss. 2017, 17, 549. [Google Scholar] [CrossRef]
- Korpilo, S.; Virtanen, T.; Lehvävirta, S. Smartphone GPS tracking—Inexpensive and efficient data collection on recreational movement. Landsc. Urban Plan. 2017, 157, 608–617. [Google Scholar] [CrossRef]
- Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016, 151, 72–80. [Google Scholar] [CrossRef]
- Zhao, C.; Chan, S.S.F.; Cham, W.-K.; Chu, L.M. Plant identification using leaf shapes—A pattern counting approach. Pattern Recognit. 2015, 48, 3203–3215. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 2018, 172, 84–91. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Piiroinen, R.; Fassnacht, F.E.; Heiskanen, J.; Maeda, E.; Mack, B.; Pellikka, P. Invasive tree species detection in the Eastern Arc Mountains biodiversity hotspot using one class classification. Remote Sens. Environ. 2018, 218, 119–131. [Google Scholar] [CrossRef]
- Herdiyeni, Y.; Ginanjar, A.R.; Anggoro, M.R.L.; Douady, S.; Zuhud, E.A.M. MedLeaf: Mobile biodiversity informatics tool for mapping and identifying Indonesian medicinal Plants. In Proceedings of the 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), Fukuoka, Japan, 13–15 November 2015; pp. 54–59. [Google Scholar]
- Qian, J.; Yang, X.; Wu, X.; Xing, B.; Wu, B.; Li, M. Farm and environment information bidirectional acquisition system with individual tree identification using smartphones for orchard precision management. Comput. Electron. Agric. 2015, 116, 101–108. [Google Scholar] [CrossRef]
- Carranza-Rojas, J.; Goeau, H.; Bonnet, P.; Mata-Montero, E.; Joly, A. Going deeper in the automated identification of Herbarium specimens. BMC Evol. Biol. 2017, 17, 181. [Google Scholar] [CrossRef] [PubMed]
Confusion Matrix | Predict | ||
---|---|---|---|
0 | 1 | ||
Real | 0 | a | b |
1 | c | d |
Plot Number | Bias (m) | RMSE (m) |
---|---|---|
1 | 0.023 | 0.222 |
2 | 0.020 | 0.229 |
Plot Number | Category | Bias | rBias (%) | RMSE | rRMSE (%) |
---|---|---|---|---|---|
1 | Height (m) | −0.22 | −1.69 | 0.87 | 6.74 |
DBH (cm) | −0.22 | −0.88 | 2.54 | 10.17 | |
2 | Height (m) | −0.17 | −1.27 | 0.90 | 6.69 |
DBH (cm) | −0.37 | −2.41 | 2.08 | 13.38 |
Work Mode | Mobile GIS | Tree Position | DBH | Tree Height | Cost Estimate | Number of Tools Carried at Work | Time Required to Measure the Position, DBH, and Height of a Single Tree at Work |
---|---|---|---|---|---|---|---|
current mode | mobile phone (300 dollars–450 dollars) | RTK (approximately 2200 dollars) or GPS (450 dollars) | diameter tape (5 dollars) or calipers (30 dollars) | hypsometer (74dollars) or total station (approximately 2200dollars) | approximately 1100 dollars-2500 dollars | ≥4 | For 60–90 s, measurement data requires manual entry of data forms |
the presented method | Ground measurement tool | approximately 520 dollars | 1 | For 20–30 s, measurement data are automatically entered into the data form. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, G.; Chen, F.; Li, Y.; Liu, B.; Fan, X. Development and Testing of a New Ground Measurement Tool to Assist in Forest GIS Surveys. Forests 2019, 10, 643. https://doi.org/10.3390/f10080643
Fan G, Chen F, Li Y, Liu B, Fan X. Development and Testing of a New Ground Measurement Tool to Assist in Forest GIS Surveys. Forests. 2019; 10(8):643. https://doi.org/10.3390/f10080643
Chicago/Turabian StyleFan, Guangpeng, Feixiang Chen, Yan Li, Binbin Liu, and Xu Fan. 2019. "Development and Testing of a New Ground Measurement Tool to Assist in Forest GIS Surveys" Forests 10, no. 8: 643. https://doi.org/10.3390/f10080643
APA StyleFan, G., Chen, F., Li, Y., Liu, B., & Fan, X. (2019). Development and Testing of a New Ground Measurement Tool to Assist in Forest GIS Surveys. Forests, 10(8), 643. https://doi.org/10.3390/f10080643