Global Assessment of Climate-Driven Susceptibility to South American Leaf Blight of Rubber Using Emerging Hot Spot Analysis and Gridded Historical Daily Data
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 9 January 2019).
- Da Hora Júnior, B.T.; de Macedo, D.M.; Barreto, R.W.; Evans, H.C.; Mattos, C.R.R.; Maffia, L.A.; Mizubuti, E.S.G. Erasing the Past: A New Identity for the Damoclean Pathogen Causing South American Leaf Blight of Rubber. PLoS ONE 2014, 9, e104750. [Google Scholar] [CrossRef] [PubMed]
- Besse, P.; Seguin, M.; Lebrun, P.; Chevallier, M.H.; Nicolas, D.; Lanaud, C. Genetic diversity among wild and cultivated populations of Hevea brasiliensis assessed by nuclear RFLP analysis. Theor. Appl. Genet. 1994, 88, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Le Guen, V.; Seguin, M.; Mattos, C.R.R. Qualitative resistance of Hevea to Phyllachora huberi P. Henn. Euphytica 2000, 112, 211–217. [Google Scholar] [CrossRef]
- Le Guen, V.; Koop, D.M.; Salgado, L.R.; Déon, M.; Doare, F.; Souza, L.M.; Seguin, M.; Berger, A.; Pujade-Renaud, V.; Garcia, D. Genetic and genomic diversity response of rubber tree to a major fungal disease. In Proceedings of the 11th International Congress of Plant Molecular Biology, Iguazú Falls, Brazil, 25–30 October 2015. [Google Scholar]
- Le Guen, V.; Lespinasse, D.; Oliver, G.; Rodier-Goud, M.; Pinard, F.; Seguin, M. Molecular mapping of genes conferring field resistance to South American Leaf Blight (Microcyclus ulei) in rubber tree. Theor. Appl. Genet. 2003, 108, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Le Guen, V.; Garcia, D.; Mattos, C.R.R.; Clément-Demange, A. Evaluation of field resistance to Microcyclus ulei of a collection of Amazonian rubber tree (Hevea brasiliensis) germplasm. Cropp Breed. Appl. Biotechnol. 2002, 2, 141–148. [Google Scholar] [CrossRef]
- Varghese, Y.A. Germplasm resources and genetic improvement. In Developments in Crop Science; Sethuraj, M.R., Mathew, N.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 23, pp. 88–115. [Google Scholar]
- Onokpise, O.U. Natural Rubber, Hevea Brasiliensis (Willd. Ex A. Juss.) MüLl. Arg., Germplasm Collection in the Amazon Basin, Brazil: A Retrospective. Econ. Bot. 2004, 58, 544–555. [Google Scholar] [CrossRef]
- Priyadarshan, P.M. Genetic Diversity and Erosion in Hevea Rubber. In Genetic Diversity and Erosion in Plants; Ahuja, M.R., Jain, S.M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 8, pp. 233–267. ISBN 978-3-319-25953-6. [Google Scholar]
- Barrès, B.; Carlier, J.; Seguin, M.; Fenouillet, C.; Cilas, C.; Ravigné, V. Understanding the recent colonization history of a plant pathogenic fungus using population genetic tools and Approximate Bayesian Computation. Heredity 2012, 109, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Guyot, J.; Le Guen, V. A Review of a Century of Studies on South American Leaf Blight of the Rubber Tree. Plant Dis. 2018, 102, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- Häuser, I.; Martin, K.; Germer, J.; He, P.; Blagodatskiy, S.; Liu, H.; Krauss, M.; Rajaona, A.; Shi, M.; Langenberger, G.; et al. Environmental and socio-economic impacts of rubber cultivation in the Mekong region: Challenges for sustainable land use. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Le Guen, V.; Guyot, J.; Mattos, C.R.R.; Seguin, M.; Garcia, D. Long lasting rubber tree resistance to Microcyclus ulei characterized by reduced conidial emission and absence of teleomorph. Crop Prot. 2008, 27, 1498–1503. [Google Scholar] [CrossRef]
- Evans, H.C. Invasive neotropical pathogens of tree crops. In Tropical Mycology: Micromycetes; Watling, R., Frankland, J.C., Ainsworth, A.M., Isaac, S., Robinson, C.H., Eds.; CABI Pub: Wallingford, Oxon, UK; New York, NY, USA, 2002; Volume 2, pp. 83–112. ISBN 0-85199-543-8. [Google Scholar]
- Onokpise, O.; Louime, C. The Potential of the South American Leaf Blight as a Biological Agent. Sustainability 2012, 4, 3151–3157. [Google Scholar] [CrossRef]
- Miedaner, T. Henry Ford musste kapitulieren. In Pflanzenkrankheiten, die die Welt beweg(t)en; Springer: Berlin/Heidelberg, Germany, 2017; pp. 211–234. ISBN 978-3-662-49903-0. [Google Scholar]
- LebaiJuri, M.; Othman, S.; Wan Mashol, W.Z.; Ismail, R. Comparative feasibility of gamma, electron beam and x-rays facilities at the Kuala Lumpur International airport (KLIA), Sepang, Malaysia. In Proceedings of the INC ’97—International Nuclear Conference: A New Era in Nuclear Science and Technology—The Challenge of the 21st Century, Kuala Lumpur, Malaysia, 27–28 October 1997; pp. 173–185. [Google Scholar]
- Asna, B.O.; Ho, H.L. Managing Invasive Species: The Threat to Oil-palm and Rubber—The Malaysian Plant Quarantine Regulatory Perspective. In Proceedings of the Unwelcome Guests—Proceedings of the Asia-Pacific Forest Invasive Species Conference, Kunming, China, 17–23 August 2003; pp. 32–38. [Google Scholar]
- Hashim, I. South American Leaf Blight (Microcyclus ulei) of Hevea rubber. In Protection against South American Leaf Blight of Rubber in Asia and the Pacific Region; FAO: Bangkok, Thailand, 2012; Volume II, pp. 21–133. ISBN 978-92-5-107228-8. [Google Scholar]
- Furtado, E.L.; da Cunha, A.R.; Alvares, C.A.; Bevenuto, J.A.Z.; Passos, J.R. Ocorrência de epidemia do mal das folhas em regiões de “escape” do Brasil. Arq. Inst. Biol. 2015, 82, 1–6. [Google Scholar] [CrossRef]
- Rivano, F.; Maldonado, L.; Simbaña, B.; Lucero, R.; Gohet, E.; Cevallos, V.; Yugcha, T. Suitable rubber growing in Ecuador: An approach to South American leaf blight. Ind. Crops Prod. 2015, 66, 262–270. [Google Scholar] [CrossRef]
- Francl, L.J. The Disease Triangle: A Plant Pathological Paradigm Revisited. Plant Health Instr. 2001. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; ISBN 978-0-12-044565-3. [Google Scholar]
- Chee, K.H. Factors affecting discharge, germination and viability of spores of Microcyclus ulei. Trans. Br. Mycol. Soc. 1976, 66, 499–504. [Google Scholar] [CrossRef]
- Langford, M.H. South American Leaf Blight of Hevea Rubber Trees; US Dept. of Agriculture: Washington, DC, USA, 1945; Volume 882.
- Guyot, J.; Condina, V.; Doaré, F.; Cilas, C.; Sache, I. Role of ascospores and conidia in the initiation and spread of South American leaf blight in a rubber tree plantation. Plant Pathol. 2014, 63, 510–518. [Google Scholar] [CrossRef]
- Gasparotto, L.; Junqueira, N.T.V. Ecophysiological variability of Microcyclus ulei, causal agent of rubber tree leaf blight. Fitopatol. Bras. 1994, 19, 22–28. [Google Scholar]
- Holliday, P. Dispersal of conidia of Dothidella ulei from Hevea brasiliensis. Ann. Appl. Biol. 1969, 63, 435–447. [Google Scholar] [CrossRef]
- Guyot, J.; Condina, V.; Doaré, F.; Cilas, C.; Sache, I. Segmentation applied to weather-disease relationships in South American leaf blight of the rubber tree. Eur. J. Plant Pathol. 2010, 126, 349–362. [Google Scholar] [CrossRef]
- Lieberei, R. South American Leaf Blight of the Rubber Tree (Hevea spp.): New Steps in Plant Domestication using Physiological Features and Molecular Markers. Ann. Bot. 2007, 100, 1125–1142. [Google Scholar] [CrossRef] [PubMed]
- Marattukalam, J.G.; Saraswathyamma, C.K. Propagation and planting. In Developments in Crop Science; Sethuraj, M.R., Mathew, N.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 23, pp. 164–199. [Google Scholar]
- Priyadarshan, P.M. Biology of Hevea Rubber; CABI: Wallingford, Oxfordshire, UK; Cambridge, MA, USA, 2011; ISBN 978-1-84593-666-2. [Google Scholar]
- Fang, Y.; Mei, H.; Zhou, B.; Xiao, X.; Yang, M.; Huang, Y.; Long, X.; Hu, S.; Tang, C. De novo Transcriptome Analysis Reveals Distinct Defense Mechanisms by Young and Mature Leaves of Hevea brasiliensis (Para Rubber Tree). Sci. Rep. 2016, 6, 33151. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Cazaux, E.; Rivano, F.; D’Auzac, J. Chemical and structural barriers to Microcyclus ulei, the agent of South American leaf blight, in Hevea spp. Eur. J. For. Pathol. 1995, 25, 282–292. [Google Scholar] [CrossRef]
- Da Silva, K.R.; Cecílio, R.A.; Xavier, A.C.; Pezzopane, J.R.M.; Garcia, G.D.O. Zoneamento edafoclimático para a cultura da seringueira no Espírito Santo. Irriga 2013, 18, 1. [Google Scholar] [CrossRef]
- De Camargo, Â.P.; Marin, F.R.; de Camargo, M.B.P. Zoneamento Climático da Heveicultura no Brasil; Embrapa Monitoramento por Satélite; Embrapa (Brazilian Agricultural Research Corporation): Campinas, São Paulo, Brazil, 2003; p. 19. [Google Scholar]
- Jaimes, Y.; Rojas, J.; Cilas, C.; Furtado, E.L. Suitable climate for rubber trees affected by the South American Leaf Blight (SALB): Example for identification of escape zones in the Colombian middle Magdalena. Crop Prot. 2016, 81, 99–114. [Google Scholar] [CrossRef]
- Roy, C.B.; Newby, Z.-J.; Mathew, J.; Guest, D.I. A climatic risk analysis of the threat posed by the South American leaf blight (SALB) pathogen Microcyclus ulei to major rubber producing countries. Eur. J. Plant Pathol. 2017, 148, 129–138. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- CPC Global Unified Gauge-Based Analysis of Daily Precipitation. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html (accessed on 21 August 2018).
- NCEP. NCEP Global Reanalysis Daily Surface Relative Humidity Data. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html (accessed on 21 August 2018).
- Ashouri, H.; Sorooshian, S.; Hsu, K.-L.; Bosilovich, M.G.; Lee, J.; Wehner, M.F.; Collow, A. Evaluation of NASA’s MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States. J. Hydrometeorol. 2015, 17, 693–711. [Google Scholar] [CrossRef]
- Cui, W.; Dong, X.; Xi, B.; Kennedy, A. Evaluation of Reanalyzed Precipitation Variability and Trends Using the Gridded Gauge-Based Analysis over the CONUS. J. Hydrometeorol. 2017, 18, 2227–2248. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Lin, H.; Pepin, N.; Sillanpää, M.; Kang, S. Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau: RELATIVE HUMIDITY IN THE TP. J. Geophys. Res. Atmospheres 2015, 120, 3610–3621. [Google Scholar] [CrossRef]
- Villamil-Otero, G.A.; Zhang, J.; He, J.; Zhang, X. Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean. Adv. Atmospheric Sci. 2018, 35, 85–94. [Google Scholar] [CrossRef]
- Dessler, A.E.; Davis, S.M. Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Golbon, R.; Cotter, M.; Sauerborn, J. Climate change impact assessment on the potential rubber cultivating area in the Greater Mekong Subregion. Environ. Res. Lett. 2018, 13, 084002. [Google Scholar] [CrossRef]
- Nelson, T.A.; Boots, B. Detecting spatial hot spots in landscape ecology. Ecography 2008, 31, 556–566. [Google Scholar] [CrossRef]
- Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.; Raad, M.; Hansen, M.; et al. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res. Lett. 2017, 12, 024012. [Google Scholar] [CrossRef]
- Holliday, P. South American leaf blight (Microcyclus ulei) of Hevea brasiliensis. Phytopathol. Pap. 1970, 12, 31. [Google Scholar]
- Liyanage, A.d.S.; Jacob, C.K. Diseases of economic importance in rubber. In Developments in Crop Science; Sethuraj, M.R., Mathew, N.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 23, pp. 324–359. [Google Scholar]
- Yeang, H.-Y. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol. 2007, 175, 283–289. [Google Scholar] [CrossRef] [PubMed]
- De Lemos Filho, J.P.; Nova, N.A.V.; Pinto, H.S. Base temperature and heat units for leaf flushing emission and growth of Hevea brasiliensis Muell. Arg. Int. J. Biometeorol. 1993, 37, 65–67. [Google Scholar] [CrossRef]
- De Lemos Filho, J.P.; Nova, N.A.V.; Pinto, H.S. A model including photoperiod in degree days for estimating Hevea bud growth. Int. J. Biometeorol. 1997, 41, 1–4. [Google Scholar] [CrossRef]
- Ortolani, A.A.; Sentelhas, P.C.; Camargo, M.B.P.; Pezzopane, J.E.M.; de S Goncalves, P. Agrometeorological model for seasonal rubber tree yield. Ind. J. Nat. Rubber Res. 1998, 11, 8–14. [Google Scholar]
- Montény, B.A.; Barbier, J.M.; Bernos, C.M. Determination of the energy exchanges of a forest type culture: Hevea brasiliensis. In The Forest–Atmosphere Interaction; Hutchinson, B.A., Hicks, B.B., Eds.; Reidel: Dordrecht, The Netherlands, 1985; pp. 211–233. [Google Scholar]
- Liyanage, K.K.; Khan, S.; Ranjitkar, S.; Yu, H.; Xu, J.; Brooks, S.; Beckschäfer, P.; Hyde, K.D. Evaluation of key meteorological determinants of wintering and flowering patterns of five rubber clones in Xishuangbanna, Yunnan, China. Int. J. Biometeorol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Omokhafe, K.O. Interaction between flowering pattern and latex yield in Hevea brasiliensis Muell. Arg. Cropp Breed. Appl. Biotechnol. 2004, 4, 280–284. [Google Scholar] [CrossRef]
- Priyadarshan, P.M.; Sasikumar, S.; de S Goncalves, P. Phenological changes in Hevea brasiliensis under differential geo-climates. The Planter 2001, 77, 447–459. [Google Scholar]
- Zhai, D.-L.; Yu, H.; Chen, S.-C.; Ranjitkar, S.; Xu, J. Responses of rubber leaf phenology to climatic variations in Southwest China. Int. J. Biometeorol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Whaley, W.G. Rubber-The Primary Sources for American Production. Econ. Bot. 1948, 2, 198–216. [Google Scholar] [CrossRef]
- Maeght, J.-L.; Gonkhamdee, S.; Clément, C.; Isarangkool Na Ayutthaya, S.; Stokes, A.; Pierret, A. Seasonal Patterns of Fine Root Production and Turnover in a Mature Rubber Tree (Hevea brasiliensis Müll. Arg.) Stand- Differentiation with Soil Depth and Implications for Soil Carbon Stocks. Front. Plant Sci. 2015, 6, 1022. [Google Scholar] [CrossRef] [PubMed]
- Fernando, T.H.P.S.; Jayasinghe, C.K.; Wijesundera, R.L.C.; Siriwardane, D. Some factors affecting in vitro production, germination and viability of conidia of Corynespora cassiicola from Hevea brasiliensis. J. Natl. Sci. Found. Sri Lanka 2012, 40, 241. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Lu, H.; Wang, P.; Luo, Q.; Liu, W.; Li, H. Vertical patterns of soil water acquisition by non-native rubber trees (Hevea brasiliensis) in Xishuangbanna, southwest China. Ecohydrology 2014, 7, 1234–1244. [Google Scholar] [CrossRef]
- Groom, Q.J.; Adriaens, T.; Desmet, P.; Simpson, A.; De Wever, A.; Bazos, I.; Cardoso, A.C.; Charles, L.; Christopoulou, A.; Gazda, A.; et al. Seven Recommendations to Make Your Invasive Alien Species Data More Useful. Front. Appl. Math. Stat. 2017, 3, 1–8. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golbon, R.; Cotter, M.; Mahbod, M.; Sauerborn, J. Global Assessment of Climate-Driven Susceptibility to South American Leaf Blight of Rubber Using Emerging Hot Spot Analysis and Gridded Historical Daily Data. Forests 2019, 10, 203. https://doi.org/10.3390/f10030203
Golbon R, Cotter M, Mahbod M, Sauerborn J. Global Assessment of Climate-Driven Susceptibility to South American Leaf Blight of Rubber Using Emerging Hot Spot Analysis and Gridded Historical Daily Data. Forests. 2019; 10(3):203. https://doi.org/10.3390/f10030203
Chicago/Turabian StyleGolbon, Reza, Marc Cotter, Mehdi Mahbod, and Joachim Sauerborn. 2019. "Global Assessment of Climate-Driven Susceptibility to South American Leaf Blight of Rubber Using Emerging Hot Spot Analysis and Gridded Historical Daily Data" Forests 10, no. 3: 203. https://doi.org/10.3390/f10030203
APA StyleGolbon, R., Cotter, M., Mahbod, M., & Sauerborn, J. (2019). Global Assessment of Climate-Driven Susceptibility to South American Leaf Blight of Rubber Using Emerging Hot Spot Analysis and Gridded Historical Daily Data. Forests, 10(3), 203. https://doi.org/10.3390/f10030203