Phosphorus Availabilities Differ between Cropland and Forestland in Shelterbelt Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Analysis of Basic Soil Chemical and Physical Properties
2.3. Soil P extraction and Fractionation
2.4. Statistical Analysis
3. Results
3.1. Subsection Soil Properties and P Status in Cropland and Forestland
3.2. Soil P Fractionation in Cropland and Forestland
4. Discussion
4.1. Greater P Build-up in the Surface Soil in the Cropland than in the Forestland
4.2. Soil Test P (PKelowna) is Related to Fe/Al-P
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thevathasan, N.V.; Gordon, A.M.; Bradley, R. Agroforestry research and development in Canada: The way forward. In The Future of Global Land Use; Nair, P.K.R., Garrity, D.P., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 247–283. [Google Scholar]
- McNaughton, K.G. Effects of windbreaks on turbulent transport and microclimate. Agric. Ecosyst. Environ. 1988, 22–23, 17–39. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil organic carbon sequestration in agroforestry systems. Rev. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef]
- Kort, J.; Turnock, R. Carbon reservoir and biomass in Canadian prairie shelterbelts. Agrofor. Syst. 1998, 44, 175–186. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Van Rees, K.C.J. Soil organic carbon sequestration by shelterbelt agroforestry systems in Saskatchewan. Can. J. Soil Sci. 2017, 97, 394–409. [Google Scholar] [CrossRef]
- Kowalchuk, T.E.; de Jong, E. Shelterbelts and their effect on crop yield. Can. J. Soil Sci. 1995, 75, 543–550. [Google Scholar] [CrossRef]
- Qiao, Y.; Fan, J.; Wang, Q. Effects of farmland shelterbelts on accumulation of soil nitrate in agro-ecosystems of an oasis in the Heihe River Basin, China. Agric. Ecosyst. Environ. 2016, 235, 182–192. [Google Scholar] [CrossRef]
- Manunta, P.; Kryzanowski, L.; Keyes, D. Preliminary Assessment of Available Soil P in Alberta: Status and Trends; Soil Quality Program, Conservation and Development Branch; Alberta Agriculture, Food and Rural Development: Edmonton, AB, Canada, 2000; p. 64.
- Paterson, B.A.; Olson, B.M.; Bennett, D.R. Alberta Soil Phosphorus Limits Project; Volume 1: Summary and recommendations; Alberta Agriculture, Food and Rural Development: Lethbridge, AB, Canada, 2006; p. 82.
- Zhang, M.; Wright, R.; Heaney, D.; Vanderwe, D. Comparison of different phosphorus extraction and determination methods using manured soils. Can. J. Soil Sci. 2004, 84, 469–475. [Google Scholar] [CrossRef]
- McKenzie, R.H.; Kryzanowski, L.; Cannon, K.; Solberg, E.; Penney, D.; Coy, G.; Heaney, D.; Harapiak, J.; Flore, N. Field Evaluation of Laboratory Tests for Soil Phosphorus; Alberta Agricultural Research Institute Report No. 90 M230; Alberta Innovation and Science: Edmonton, AB, Canada, 1995. [Google Scholar]
- Howard, A.E. Agronomic thresholds for soil phosphorus in Alberta: A review. In Alberta Soil Phosphorus Limits Project; Alberta Agriculture, Food and Rural Development: Lethbridge, AB, Canada, 2016; Volume 5, p. 42. [Google Scholar]
- McKenzie, R.H.; Stewart, J.W.B.; Dormaar, J.F.; Schaalje, G.B. Long-term crop rotation and fertilizer effects on phosphorus transformations: I. In a Chernozemic soil. Can. J. Soil Sci. 1992, 72, 569–579. [Google Scholar] [CrossRef]
- McKenzie, R.H.; Bremer, E. Relationship of soil phosphorus fractions to phosphorus soil tests and fertilizer response. Can. J. Soil Sci. 2003, 83, 443–449. [Google Scholar] [CrossRef]
- Chirino-Valle, M.R.D.; Condron, L.M. Impact of different tree species on soil phosphorus immediately following grassland afforestation. J. Soil Sci. Plant Nutr. 2016, 16, 477–489. [Google Scholar] [CrossRef]
- Li, J.; Richter, D.; Mendoza, A.; Heine, P. Four-decade responses of soil trace elements to an aggrading old-field forest: B, Mn, Zn, Cu, and Fe. Ecology 2008, 89, 2911–2923. [Google Scholar] [CrossRef]
- Liversley, S.J.; Gregory, P.J.; Buresh, R.J. Competition in tree row Agroforestry systems. 3. Soil water distribution and dynamics. Plant Soil 2004, 264, 129–139. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Heenan, D.P.; Marschner, P.; McNeill, A.M. Long-term effects of crop rotation, stubble management and tillage on soil phosphorus dynamics. Soil Res. 2006, 44, 611–618. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Kleinman, P.J.A.; McDowell, R.W.; Gitau, M.; Bryant, R.B. Modeling phosphorus transport in agricultural watersheds: Processes and possibilities. J. Soil Water Conserv. 2002, 57, 425–439. [Google Scholar]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Tiessen, H.; Stewart, J.W.B.; Cole, C.V. Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci. Soc. Am. J. 1984, 48, 853–858. [Google Scholar] [CrossRef]
- Motavalli, P.P.; Miles, R.J. Soil phosphorus fractions after 111 years of animal manure and fertilizers applications. Biol. Fertil. Soils 2002, 36, 35–42. [Google Scholar] [CrossRef]
- Castillo, M.S.; Wright, A.L. Microbial activity and phosphorus availability in a subtropical soil under different land uses. World J. Agric. Sci. 2008, 4, 314–320. [Google Scholar]
- Garcia-Montiel, D.C.; Nelly, C.H.; Melillo, J.; Thomas, S.; Steudler, P.A.; Cerri, C.C. Soil phosphorus transformation following forest clearing for pasture in the Brazilian Amazon. Soil Sci. Soc. Am. J. 2000, 64, 1792–1804. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Frossard, E.; Stewart, J.W.B.; St. Arnaud, R.J. Distribution and mobility of phosphorus in grassland and forest soils of Saskatchewan. Can. J. Soil Sci. 1989, 69, 401–416. [Google Scholar] [CrossRef]
- Vaithiyanathan, P.; Correll, D.L. The Rhode River Watershed: Phosphorus Distribution and Export in Forest and Agricultural Soils. J. Environ. Qual. 1992, 21, 280–288. [Google Scholar] [CrossRef]
- Frossard, E.; Condron, L.M.; Oberson, A.; Sinaj, S.; Fardeau, J.C. Processes governing phosphorus availability in temperate soils. J. Environ. Qual. 2000, 29, 15–23. [Google Scholar] [CrossRef]
- Environment Canada. Alberta Weather Condition. 2012. Available online: http://weather.gc.ca/forecast/canada/index e.html?id=AB (accessed on 2 May 2017).
- Soil Classification Working Group. The Canadian System of Soil Classification; NRC Research Press: Ottawa, ON, Canada, 1998; p. 187. [Google Scholar]
- Baah-Acheamfour, M.; Chang, S.X.; Cameron, N.C.; Bork, E.W. Carbon pool size and stability are affected by trees and grassland cover types within agroforestry systems of western Canada. Agric. Ecosyst. Environ. 2015, 213, 105–113. [Google Scholar] [CrossRef]
- Lim, S.S.; Baah-Acheamfour, M.; Choi, W.J.; Arshad, M.A.; Fatemi, F.; Banerjee, S.; Carlyle, C.N.; Bork, E.W.; Park, H.J.; Chang, S.X. Soil organic carbon stocks in three Canadian agroforestry systems from surface organic to deeper mineral soils. For. Ecol. Manag. 2018, 417, 103–109. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; Francis and Taylor Group LLC/CRC Press: Boca Raton, FL, USA, 2006; pp. 334887–342742. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Qian, P.; Schoenau, J.J.; Karamanos, R.E. Simultaneous extraction of available phosphorus and potassium with a new soil test: A modification of the Kelowna extraction. Commun. Soil Sci. Plant Anal. 1994, 25, 627–635. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution methods for the determination of phosphate in natural water. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Ige, D.V.; Akinremi, O.O.; Flaten, D.N.; Ajiboye, B.; Kashem, M.A. Phosphorus sorption capacity of alkaline Manitoba soils and its relationship to soil properties. Can. J. Soil Sci. 2005, 85, 417–426. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Sharpley, A.N. Estimation soil phosphorus sorption saturation from Mehlich-3 data. Commun. Soil Sci. Plant Anal. 2002, 33, 1825–1839. [Google Scholar] [CrossRef]
- Nair, V.D.; Graetz, D.A.; Portier, K.M. Forms of phosphorus in soil profiles from dairies of south Florida. Soil Sci. Soc. Am. J. 1995, 59, 1244–1249. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis Part 3—Chemical Methods; SSSA Book Ser. 5.3; SSSA, ASA: Madison, WI, USA, 1996. [Google Scholar]
- Baah-Acheamfour, M.; Cameron, N.C.; Bork, E.W.; Chang, S.X. Forest and perennial herbland cover reduce microbial respiration but increase root respiration in agroforestry systems. Agric. For. Meteorol. 2020, 280, 107790. [Google Scholar] [CrossRef]
- Sharpley, A.N. Depth of surface soil-runoff interaction as affected by rainfall, soil slope and management. Soil Sci. Soc. Am. J. 1985, 49, 1010–1015. [Google Scholar] [CrossRef]
- McCollum, R.E. Buildup and decline in soil-phosphorus—30-year trends on a Typic Umprabuult. Agron. J. 1991, 83, 77–85. [Google Scholar] [CrossRef]
- Spohn, M.; Kuzyakov, Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol. Biochem. 2013, 61, 69–75. [Google Scholar] [CrossRef]
- Safford, L.O.; Bell, S. Biomass of fine roots in a white spruce plantation. Can. J. For. Res. 1972, 2, 169–172. [Google Scholar] [CrossRef]
- Soon, Y.K. Solubility and retention of phosphate in soils of the northwestern Canadian prairie. Can. J. Soil Sci. 1991, 71, 453–463. [Google Scholar] [CrossRef]
- Sims, J.T.; Maguire, R.O.; Leyten, A.B.; Gartley, K.L.; Pautler, M.C. Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the mid-Atlantic United States of America. Soil Sci. Soc. Am. J. 2002, 66, 2016–2032. [Google Scholar] [CrossRef]
- Von Sperber, C.; Stallforth, R.; Du Preez, C.; Amelung, W. Changes in soil phosphorus pools during prolonged arable cropping in semiarid grasslands. Eur. J. Soil Sci. 2017, 68, 462–471. [Google Scholar] [CrossRef]
- Yang, W.; Cheng, H.; Hao, F.; Ouyang, W.; Liu, S.; Lin, C. The influence of land-use change on the forms of phosphorus in soil profiles from the Sanjiang Plain of China. Geoderma 2012, 189–190, 207–214. [Google Scholar] [CrossRef]
- Costa, M.; Gama-Rodrigues, A.; Gonçalves, J.; Gama-Rodrigues, E.; Sales, M.; Aleixo, S. Labile and non-labile fractions of phosphorus and its transformations in soil under eucalyptus plantations, Brazil. Forests 2016, 7, 15. [Google Scholar] [CrossRef]
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley and Sons: New York, NY, USA, 1979. [Google Scholar]
- Reddy, D.D.; Rao, A.S.; Takkar, P.N. Effects of repeated manure and fertilizer phosphorus additions on soil phosphorus dynamics under a soybean-wheat rotation. Biol. Fertil. Soils 1999, 28, 150–155. [Google Scholar] [CrossRef]
- Xavier, F.A.D.S.; Almeida, E.F.; Cardoso, I.M. Soil phosphorus distribution in sequentially extracted fractions in tropical coffee-agroecosystems in the Atlantic Forest biome, Southeastern Brazil. Nutr. Cycl. Agroecosyst. 2011, 89, 31–44. [Google Scholar] [CrossRef]
- Stutter, M.I.; Shand, C.A.; George, T.S.; Blackwell, M.S. Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma 2015, 257, 29–39. [Google Scholar] [CrossRef]
Land-Use Type | Soil Properties | |||||
---|---|---|---|---|---|---|
Sand | Silt | Clay | Total C | pH | Bulk Density (Mg m−3) | |
(g kg−1) | ||||||
Cropland | 27.74(14.76) | 46.73(5.88) | 25.51(11.0) | 47.88(9.75) | 6.07(0.85) | 1.47(0.10)a 2 |
Forestland | 29.50(10.07) | 44.07(12.8) | 26.44(6.96) | 65.75(23.95) | 6.04(0.67) | 1.24(0.20)b |
Land-use type | Soil Properties | |||||
Cation exchange capacity (cmolc kg−1) | Ca | Mg | Al | Fe | Mn | |
(mg kg−1) 1 | ||||||
Cropland | 41.58(11.93) | 4.83(0.84) | 0.83(0.66) | 0.57(0.18) | 0.30(0.84) | 0.06(0.84) |
Forestland | 42.91(12.80) | 4.98(0.77) | 0.69(0.18) | 0.52(0.06) | 0.24(0.05) | 0.06(0.03) |
Land-Use Type | Soil Property | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sand | Clay | Total C | pH | Al 1 | Fe 1 | Mn 1 | Fe/Al-P 1 | Org-P 1 | |
(g kg−1) | (mg kg−1) | ||||||||
Cropland | −0.77 | 0.77 | 0.94 | −0.82 | NS | NS | NS | NS | −0.77 |
(0.07) | (0.07) | (<0.01) | (0.04) | (0.07) | |||||
Forestland | −0.82 | NS 2 | NS | −0.82 | 0.88 | 0.77 | −0.82 | 0.77 | NS |
(0.04) | (0.04) | (0.01) | (0.07) | (0.04) | (0.07) |
Land-Use Type | Depth (cm) | Water-P | Ca/Mg-P a | Fe/Al-P 1 | Org-P 1 | Residual P | Total P |
---|---|---|---|---|---|---|---|
(mg kg−1) | |||||||
Cropland | 0–10 | 7.68 a | 170.0 a | 328.0 aA 2 | 626.3 aA | 1339.1 a | 2467.0 a |
10–30 | 1.97 b | 130.0 a | 203.8 b | 489.7 b | 1272.2 a | 2097.7 a | |
Forestland | 0–10 | 6.82 a | 149.6 a | 215.6 aB | 581.5 aB | 1326.3 a | 2279.9 a |
10–30 | 1.74 b | 100.6 b | 225.6 a | 501.9 a | 1049.9 a | 1879.8 a |
Land-Use Type | Soil Test P Method | P Fraction 1 | Linear Regression Model | R2 | p-Value |
---|---|---|---|---|---|
Cropland | Kelowna | Fe/Al-P | Y = 0.22x − 9.77 | 0.50 | 0.005 |
Ca/Mg-P | Y = 0.41x − 20.14 | 0.24 | 0.051 | ||
Inorganic P | Y = 0.19x − 30.68 | 0.55 | 0.003 | ||
Mehlich-3 | Fe/Al-P | Y = 0.37x − 31.27 | 0.67 | <0.001 | |
Ca/Mg-P | Y = 0.88x − 65.52 | 0.48 | 0.007 | ||
Inorganic P | Y = 0.32x − 70.98 | 0.80 | <0.001 | ||
Forestland | Kelowna | Fe/Al-P | Y = 0.09x − 4.96 | 0.45 | 0.009 |
Inorganic P | Y = 0.08x − 12.75 | 0.47 | <0.001 | ||
Org-P | Y = 0.09x − 32.52 | 0.24 | 0.051 | ||
Mehlich-3 | Ca/Mg-P | Y = 0.39x − 12.23 | 0.22 | 0.061 | |
Inorganic P | Y = 0.15x − 16.61 | 0.29 | 0.031 |
Soil Property a | PC1 b | PC2 |
---|---|---|
PKelowna | 0.76 | 0.20 |
PMehlich | 0.89 | 0.29 |
Fe/Al-P | 0.92 | −0.24 |
Ca/Mg-P | 0.72 | 0.35 |
Org-P | 0.78 | 0.37 |
Fe | 0.70 | −0.22 |
Al | 0.42 | −0.84 |
Ca | −0.30 | 0.78 |
Eigenvalue | 4.11 | 1.82 |
% Variance | 46 | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manimel Wadu, M.C.W.; Ma, F.; Chang, S.X. Phosphorus Availabilities Differ between Cropland and Forestland in Shelterbelt Systems. Forests 2019, 10, 1001. https://doi.org/10.3390/f10111001
Manimel Wadu MCW, Ma F, Chang SX. Phosphorus Availabilities Differ between Cropland and Forestland in Shelterbelt Systems. Forests. 2019; 10(11):1001. https://doi.org/10.3390/f10111001
Chicago/Turabian StyleManimel Wadu, Mihiri C.W., Fengxiang Ma, and Scott X. Chang. 2019. "Phosphorus Availabilities Differ between Cropland and Forestland in Shelterbelt Systems" Forests 10, no. 11: 1001. https://doi.org/10.3390/f10111001
APA StyleManimel Wadu, M. C. W., Ma, F., & Chang, S. X. (2019). Phosphorus Availabilities Differ between Cropland and Forestland in Shelterbelt Systems. Forests, 10(11), 1001. https://doi.org/10.3390/f10111001