Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide
Abstract
1. Introduction
2. Materials and Methods
2.1. Global Dataset
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Holtmeier, F. Mountain timberlines: Ecology, patchiness, dynamics. In Advances in Global Change Research; Springer Science & Business Media: Berlin, Germany, 2009; Volume 36, pp. 5–10. [Google Scholar]
- Tranquillini, W. Physiological Ecology of the Alpine Timberline: Tree Existence at High Altitudes with Special Reference to the European Alps; Springer Science & Business Media: Berlin, Germany, 2012; Volume 31. [Google Scholar]
- Smith, W.K.; Germino, M.J.; Hancock, T.E.; Johnson, D.M. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 2003, 23, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Harsch, M.A.; Bader, M.Y. Treeline form—A potential key to understanding treeline dynamics. Global Ecol. Biogeogr. 2011, 20, 582–596. [Google Scholar] [CrossRef]
- Holtmeier, F.; Broll, G. The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado Front Range, USA. Arctic Alpine Res. 1992, 24, 216–228. [Google Scholar] [CrossRef]
- Körner, C.; Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Malanson, G.P.; Butler, D.R.; Fagre, D.B.; Walsh, S.J.; Tomback, D.F.; Daniels, L.D.; Bunn, A.G. Alpine treeline of western North America: Linking organism-to-landscape dynamics. Phys. Geogr. 2007, 28, 378–396. [Google Scholar] [CrossRef]
- Johnson, A.; Yeakley, A. Wood microsites at timberline-alpine meadow borders: Implications for conifer seedling regeneration and alpine meadow conifer invasion. Northwest Sci. 2013, 87, 140–160. [Google Scholar] [CrossRef]
- Andrus, R.A.; Harvey, B.J.; Rodman, K.C.; Hart, S.J.; Veblen, T.T. Moisture availability limits subalpine tree establishment. Ecology 2018, 99, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Germino, M.J.; Smith, M.K.; Resor, C.A. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol. 2002, 162, 157–168. [Google Scholar] [CrossRef]
- Kueppers, L.M.; Conlisk, E.; Castanha, C.; Moyes, A.B.; Germino, M.J.; De Valpine, P.; Torn, M.S.; Mitton, J.B. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Glob. Chang. Biol. 2017, 23, 2383–2395. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Cierjacks, A.; Iglesias, J.E.; Wesche, K.; Hensen, I. Impact of sowing, canopy cover and litter on seedling dynamics of two Polylepis species at upper tree lines in central Ecuador. J. Trop. Ecol. 2007, 23, 309. [Google Scholar] [CrossRef]
- Daly, C.; Shankman, D. Seedling establishment by conifers above tree limit on Niwot Ridge, Front Range, Colorado, USA. Arctic Alpine Res. 1985, 17, 389–400. [Google Scholar] [CrossRef]
- Maher, E.L.; Germino, M.J.; Hasselquist, N.J. Interactive effects of tree and herb cover on survivorship, physiology, and microclimate of conifer seedlings at the alpine tree-line ecotone. Can. J. Forest Res. 2005, 35, 567–574. [Google Scholar] [CrossRef]
- Germino, M.J.; Smith, M.K. Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline. Plant Cell Environ. 1999, 22, 407–415. [Google Scholar] [CrossRef]
- Mellmann-Brown, S. Regeneration of whitebark pine in the timberline ecotone of the Beartooth Plateau, USA: Spatial distribution and responsible agents. In Mountain Ecosystems: Studies in Treeline Ecology; Broll, G., Keplin, B., Eds.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Hughes, N.M.; Johnson, D.M.; Akhalkatsi, M.; Abdaladze, O. Characterizing Betula litwinowii seedling microsites at the alpine-treeline ecotone, central Greater Caucasus Mountains, Georgia. Arct. Antarct. Alpine Res. 2009, 41, 112–118. [Google Scholar] [CrossRef][Green Version]
- Autio, J.; Colpaert, A. The impact of elevation, topography and snow load damage of trees on the position of the actual timberline on the fells in central Finnish Lapland. Fennia 2005, 183, 15–36. [Google Scholar]
- Enrico, L.; Funes, G.; Cabido, M. Regeneration of Polylepis australis Bitt. in the mountains of central Argentina. For. Ecol. Manag. 2004, 190, 301–309. [Google Scholar] [CrossRef]
- Lowery, R.F. Ecology of subalpine zone tree clumps in the north Cascade Mountains of Washington. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 1972. [Google Scholar]
- Rochefort, R.M.; Peterson, D.L. Temporal and spatial distribution of trees in subalpine meadows of Mount Rainier National Park, Washington, USA. Arctic Alpine Res. 1996, 28, 52–59. [Google Scholar] [CrossRef]
- Johnson, A.C.; Yeakley, J.A. Seedling regeneration in the alpine treeline ecotone: Comparison of wood microsites and adjacent soil substrates. J. Mt. Res. Development 2016, 36, 443–452. [Google Scholar] [CrossRef]
- Motta, R.; Berretti, R.; Lingua, E.; Piussi, P. Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. Forest Ecol. Manag. 2006, 235, 155–163. [Google Scholar] [CrossRef]
- Ran, F.; Wu, C.; Peng, G.; Korpelainen, H.; Li, C. Physiological differences in Rhododendron calophytum seedlings regenerated in mineral soil or on fallen dead wood of different decaying stages. Plant Soil 2010, 337, 205–215. [Google Scholar] [CrossRef]
- Rochefort, R.M.; Little, R.T.; Woodward, A.; Peterson, D.L. Changes in subalpine tree distribution in western North America: A review of climatic and other causal factors. Holocene 2004, 4, 89–100. [Google Scholar] [CrossRef]
- Franklin, J.F.; Moir, W.H.; Douglas, G.W.; Wiberg, C. Invasion of subalpine meadows by trees in the Cascade Range, Washington and Oregon. Arct. Alpine Res. 1971, 3, 215–224. [Google Scholar] [CrossRef]
- Moir, W.H.; Rochelle, S.G.; Schoettle, A.W. Microscale patterns of tree establishment near upper treeline, Snowy Range, Wyoming, USA. Arct. Antarct. Alpine Res. 1999, 31, 379–388. [Google Scholar] [CrossRef]
- DAYMET. Available online: www.daymet.org (accessed on 2 February 2012).
- WorldClim. Available online: www.worldclim.org (accessed on 1 July 2018).
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2005; Available online: http://www.R-project.org (accessed on 10 August 2018).
- Hiller, B.; Müterthies, A. Humus forms and reforestation of an abandoned pasture at the alpine timberline (Upper Engadine, Central Alps Switzerland). In Mountain Ecosystems: Studies in Treeline Ecology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2, pp. 203–218. [Google Scholar]
- Roll-Hansen, F. Phacidium infestans—A literature review. Eur. J. For. Pathol. 1980, 19, 237–250. [Google Scholar] [CrossRef]
- Barbeito, I.; Brücker, R.L.; Rixen, C.; Bebi, P. Snow fungi—Induced mortality of Pinus cembra at the alpine treeline: Evidence from plantations. Arct. Antarct. Alpine Res. 2013, 45, 455–470. [Google Scholar] [CrossRef]
- Hunziker, U.; Brang, P. Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. For. Ecol. Manag. 2005, 210, 67–79. [Google Scholar] [CrossRef]
- Ball, M.C.; Hodges, V.S.; Laughlin, G.P. Cold induced photoinhibition limits regeneration of snow gum at tree-line. Funct. Ecol. 1991, 5, 665–668. [Google Scholar] [CrossRef]
- Batllori, E.; Camarero, J.J.; Ninot, J.M.; Gutiérrez, E. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Glob. Ecol. Biogeogr. 2009, 18, 460–472. [Google Scholar] [CrossRef]
- Inouye, D.W. The ecological and evolutionary significance of frost in the context of climate change. Ecol. Lett. 2000, 3, 457–463. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Naueks, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Wieser, G.; Holtmeier, F.-K.; Smith, W.K. Treelines in a changing global environment. In Trees in a Changing Environment; Springer: Dordrecht, The Netherlands, 2014; pp. 221–263. [Google Scholar]
- Cuevas, J.G. Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J. Ecol. 2000, 88, 840–855. [Google Scholar] [CrossRef]
- Hemp, A. Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob. Change Biol. 2005, 11, 1013–1023. [Google Scholar] [CrossRef]
- Wearne, L.J.; Morgan, J.W. Recent forest encroachment into subalpine grasslands near Mount Hotham, Victoria, Australia. Arct. Antarct. Alpine Res. 2001, 33, 369–377. [Google Scholar] [CrossRef]
- Bader, M.Y.; Ruijten, J.J. A topography-based model of forest cover at the alpine tree line in the tropical Andes. J. Biogeogr. 2008, 35, 711–723. [Google Scholar] [CrossRef]
- Kullman, L.; Öberg, L. Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: A landscape ecological perspective. J. Ecol. 2009, 97, 415–429. [Google Scholar] [CrossRef]
- Liang, E.; Dawadi, B.; Pederson, N.; Eckstein, D. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 2014, 95, 2453–2465. [Google Scholar] [CrossRef]
- Brett, R.B.; Klinka, K. A transition from gap to tree-island regeneration patterns in the subalpine forest of south-coastal British Columbia. Can. J. Forest Res. 1998, 28, 1825–1831. [Google Scholar] [CrossRef]
- Danger, M.; Daufresne, T.; Lucas, F.; Pissard, S.; Lacroix, G. Does Liebig’s law of the minimum scale up from species to communities? Oikos 2008, 117, 1741–1751. [Google Scholar] [CrossRef]
- Choler, P.; Michalet, R.; Callaway, R.M. Facilitation and competition on gradients in alpine plant communities. Ecology 2001, 82, 3295–3308. [Google Scholar] [CrossRef]
- Yu, D.; Wang, Q.; Wang, X.; Dai, L.; Li, M. Microsite Effects on Physiological Performance of Betula ermanii at and Beyond an Alpine Treeline Site on Changbai Mountain in Northeast China. Forests 2019, 10, 400. [Google Scholar] [CrossRef]
- Li, X.; Liang, E.; Gricar, J.; Rossi, S.; Cufar, K.; Ellison, A. Critical Minimum Temperature Limits Xylogenesis and Maintains Treelines on the Tibetan Plateau. Available online: https://www.biorxiv.org/content/early/2016/12/13/093781.full.pdf (accessed on 7 April 2019).
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Renard, S.M.; McIntire, E.J.; Fajardo, A. Winter conditions–not summer temperature–influence establishment of seedlings at white spruce alpine treeline in Eastern Quebec. J. Veg. Sci. 2016, 27, 29–39. [Google Scholar] [CrossRef]
- Marzano, R.; Garbarino, M.; Marcolin, E.; Pividori, M.; Lingua, E. Deadwood anisotropic facilitation on seedling establishment after a stand-replacing wildfire in Aosta Valley (NW Italy). Ecol. Eng. 2013, 51, 117–122. [Google Scholar] [CrossRef]
- Scherrer, D.; Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 2011, 38, 406–416. [Google Scholar] [CrossRef]
- Keane, R.E.; Tomback, D.F.; Aubry, C.A.; Bower, A.D.; Campbell, E.M.; Cripps, C.L.; Jenkins, M.B.; Mahalovich, M.F.; Manning, M.; McKinney, S.T.; et al. A Range-Wide Restoration Strategy for Whitebark Pine (Pinus albicaulis); General Technical Report RMRS-GTR-279; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2012; 108p.
- Fattorini, M. Establishment of transplants on machine-graded ski runs above timberline in the Swiss Alps. Restor. Ecol. 2001, 9, 119–126. [Google Scholar] [CrossRef]
- Vanha-Majamaa, I.; Lilja, S.; Ryöma, R.; Kotiaho, J.S.; Laaka-Lindberg, S. Rehabilitating boreal forest structure and species composition in Finland through logging, dead wood creation and fire: The EVO experiment. For. Ecol. Manag. 2007, 250, 77–88. [Google Scholar] [CrossRef]



| Microsite Type | Number Observations | Temperature Range, °C (mean/st.dev.) | Precipitation Range, cm (mean/st.dev.) | Elevation Range, m (mean/st.dev.) | Microsite Characteristics |
|---|---|---|---|---|---|
| Wood | 12 | 0.1–5.0 (3.06/1.78) | 86–439 (227/93.3) | 873–3300 (1814/862) | Seedlings growing in decayed wood lying on ground. |
| Convex | 10 | −2.4–5.0 (2.77/1.65) | 66–350 (208/99.8) | 1195–3100 (1964/529) | Seedlings growing on elevations or mounds on ground surface. |
| Concave | 11 | −3.6–8 (1.37/4.1) | 14–167 (87.4/34.5) | 460–4200 (2185/901) | Seedlings growing in depressions, valleys, and furrows in the ground surface. |
| Object | 19 | −4.0–12 (6.1/4.98) | 22–225 (123/55.6) | 700–4100 (2465/896) | Association of seedlings with trees, plants, wood, or rocks. |
| Climate Category | Dominant Genus Noted, Typical Site Stress Ameliorated by Microsite | Noted upward Migration, Seedling Density, Seedling Survival Trends, Microsite Association | Noted Physiologic Response [2,27,28] |
|---|---|---|---|
| Warm & wet (wood/object/convex–no dominance) | Six species, no species dominance, moderate snow pack, moist | Seedling regeneration limited by humus late snow melt. Seedling regeneration greater on wood, object, and convex sites as compared to adjacent substrates. | Ample carbon assimilation. |
| Warm & dry (object) | Pinus Drought, fire | Greater seedling regeneration in proximity of trees or other objects; “low”, “downward”, and “unlikely”. | Ample carbon assimilation, photoinhibition, drought stress. |
| Cold & wet (convexity/wood) | Picea, Abies, Tsuga, high spring snowpack, low summer soil moisture | Seedling regeneration occurs beyond forests; “notable”, “possible”, “continuous recruitment”. | Limits on carbon assimilation, death by snow mold, death by snow damage, infrequent seed crops. |
| Cold & dry | Picea, Low growing season moisture and low temperature, high radiation. | Seedling regeneration occurs; “some in depressions”, “some where crypogams are present”. | Limits on carbon assimilation, poor, infrequent seed crops, photoinhibition, infrequent seed crops, drought stress. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, A.C.; Yeakley, J.A. Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide. Forests 2019, 10, 864. https://doi.org/10.3390/f10100864
Johnson AC, Yeakley JA. Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide. Forests. 2019; 10(10):864. https://doi.org/10.3390/f10100864
Chicago/Turabian StyleJohnson, Adelaide C., and J. Alan Yeakley. 2019. "Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide" Forests 10, no. 10: 864. https://doi.org/10.3390/f10100864
APA StyleJohnson, A. C., & Yeakley, J. A. (2019). Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide. Forests, 10(10), 864. https://doi.org/10.3390/f10100864

