Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Global Dataset
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Holtmeier, F. Mountain timberlines: Ecology, patchiness, dynamics. In Advances in Global Change Research; Springer Science & Business Media: Berlin, Germany, 2009; Volume 36, pp. 5–10. [Google Scholar]
- Tranquillini, W. Physiological Ecology of the Alpine Timberline: Tree Existence at High Altitudes with Special Reference to the European Alps; Springer Science & Business Media: Berlin, Germany, 2012; Volume 31. [Google Scholar]
- Smith, W.K.; Germino, M.J.; Hancock, T.E.; Johnson, D.M. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 2003, 23, 1101–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harsch, M.A.; Bader, M.Y. Treeline form—A potential key to understanding treeline dynamics. Global Ecol. Biogeogr. 2011, 20, 582–596. [Google Scholar] [CrossRef]
- Holtmeier, F.; Broll, G. The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado Front Range, USA. Arctic Alpine Res. 1992, 24, 216–228. [Google Scholar] [CrossRef]
- Körner, C.; Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Malanson, G.P.; Butler, D.R.; Fagre, D.B.; Walsh, S.J.; Tomback, D.F.; Daniels, L.D.; Bunn, A.G. Alpine treeline of western North America: Linking organism-to-landscape dynamics. Phys. Geogr. 2007, 28, 378–396. [Google Scholar] [CrossRef]
- Johnson, A.; Yeakley, A. Wood microsites at timberline-alpine meadow borders: Implications for conifer seedling regeneration and alpine meadow conifer invasion. Northwest Sci. 2013, 87, 140–160. [Google Scholar] [CrossRef]
- Andrus, R.A.; Harvey, B.J.; Rodman, K.C.; Hart, S.J.; Veblen, T.T. Moisture availability limits subalpine tree establishment. Ecology 2018, 99, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Germino, M.J.; Smith, M.K.; Resor, C.A. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol. 2002, 162, 157–168. [Google Scholar] [CrossRef]
- Kueppers, L.M.; Conlisk, E.; Castanha, C.; Moyes, A.B.; Germino, M.J.; De Valpine, P.; Torn, M.S.; Mitton, J.B. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Glob. Chang. Biol. 2017, 23, 2383–2395. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Cierjacks, A.; Iglesias, J.E.; Wesche, K.; Hensen, I. Impact of sowing, canopy cover and litter on seedling dynamics of two Polylepis species at upper tree lines in central Ecuador. J. Trop. Ecol. 2007, 23, 309. [Google Scholar] [CrossRef]
- Daly, C.; Shankman, D. Seedling establishment by conifers above tree limit on Niwot Ridge, Front Range, Colorado, USA. Arctic Alpine Res. 1985, 17, 389–400. [Google Scholar] [CrossRef]
- Maher, E.L.; Germino, M.J.; Hasselquist, N.J. Interactive effects of tree and herb cover on survivorship, physiology, and microclimate of conifer seedlings at the alpine tree-line ecotone. Can. J. Forest Res. 2005, 35, 567–574. [Google Scholar] [CrossRef]
- Germino, M.J.; Smith, M.K. Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline. Plant Cell Environ. 1999, 22, 407–415. [Google Scholar] [CrossRef]
- Mellmann-Brown, S. Regeneration of whitebark pine in the timberline ecotone of the Beartooth Plateau, USA: Spatial distribution and responsible agents. In Mountain Ecosystems: Studies in Treeline Ecology; Broll, G., Keplin, B., Eds.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Hughes, N.M.; Johnson, D.M.; Akhalkatsi, M.; Abdaladze, O. Characterizing Betula litwinowii seedling microsites at the alpine-treeline ecotone, central Greater Caucasus Mountains, Georgia. Arct. Antarct. Alpine Res. 2009, 41, 112–118. [Google Scholar] [CrossRef]
- Autio, J.; Colpaert, A. The impact of elevation, topography and snow load damage of trees on the position of the actual timberline on the fells in central Finnish Lapland. Fennia 2005, 183, 15–36. [Google Scholar]
- Enrico, L.; Funes, G.; Cabido, M. Regeneration of Polylepis australis Bitt. in the mountains of central Argentina. For. Ecol. Manag. 2004, 190, 301–309. [Google Scholar] [CrossRef]
- Lowery, R.F. Ecology of subalpine zone tree clumps in the north Cascade Mountains of Washington. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 1972. [Google Scholar]
- Rochefort, R.M.; Peterson, D.L. Temporal and spatial distribution of trees in subalpine meadows of Mount Rainier National Park, Washington, USA. Arctic Alpine Res. 1996, 28, 52–59. [Google Scholar] [CrossRef]
- Johnson, A.C.; Yeakley, J.A. Seedling regeneration in the alpine treeline ecotone: Comparison of wood microsites and adjacent soil substrates. J. Mt. Res. Development 2016, 36, 443–452. [Google Scholar] [CrossRef]
- Motta, R.; Berretti, R.; Lingua, E.; Piussi, P. Coarse woody debris, forest structure and regeneration in the Valbona Forest Reserve, Paneveggio, Italian Alps. Forest Ecol. Manag. 2006, 235, 155–163. [Google Scholar] [CrossRef]
- Ran, F.; Wu, C.; Peng, G.; Korpelainen, H.; Li, C. Physiological differences in Rhododendron calophytum seedlings regenerated in mineral soil or on fallen dead wood of different decaying stages. Plant Soil 2010, 337, 205–215. [Google Scholar] [CrossRef]
- Rochefort, R.M.; Little, R.T.; Woodward, A.; Peterson, D.L. Changes in subalpine tree distribution in western North America: A review of climatic and other causal factors. Holocene 2004, 4, 89–100. [Google Scholar] [CrossRef]
- Franklin, J.F.; Moir, W.H.; Douglas, G.W.; Wiberg, C. Invasion of subalpine meadows by trees in the Cascade Range, Washington and Oregon. Arct. Alpine Res. 1971, 3, 215–224. [Google Scholar] [CrossRef]
- Moir, W.H.; Rochelle, S.G.; Schoettle, A.W. Microscale patterns of tree establishment near upper treeline, Snowy Range, Wyoming, USA. Arct. Antarct. Alpine Res. 1999, 31, 379–388. [Google Scholar] [CrossRef]
- DAYMET. Available online: www.daymet.org (accessed on 2 February 2012).
- WorldClim. Available online: www.worldclim.org (accessed on 1 July 2018).
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2005; Available online: http://www.R-project.org (accessed on 10 August 2018).
- Hiller, B.; Müterthies, A. Humus forms and reforestation of an abandoned pasture at the alpine timberline (Upper Engadine, Central Alps Switzerland). In Mountain Ecosystems: Studies in Treeline Ecology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 2, pp. 203–218. [Google Scholar]
- Roll-Hansen, F. Phacidium infestans—A literature review. Eur. J. For. Pathol. 1980, 19, 237–250. [Google Scholar] [CrossRef]
- Barbeito, I.; Brücker, R.L.; Rixen, C.; Bebi, P. Snow fungi—Induced mortality of Pinus cembra at the alpine treeline: Evidence from plantations. Arct. Antarct. Alpine Res. 2013, 45, 455–470. [Google Scholar] [CrossRef]
- Hunziker, U.; Brang, P. Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. For. Ecol. Manag. 2005, 210, 67–79. [Google Scholar] [CrossRef]
- Ball, M.C.; Hodges, V.S.; Laughlin, G.P. Cold induced photoinhibition limits regeneration of snow gum at tree-line. Funct. Ecol. 1991, 5, 665–668. [Google Scholar] [CrossRef]
- Batllori, E.; Camarero, J.J.; Ninot, J.M.; Gutiérrez, E. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Glob. Ecol. Biogeogr. 2009, 18, 460–472. [Google Scholar] [CrossRef]
- Inouye, D.W. The ecological and evolutionary significance of frost in the context of climate change. Ecol. Lett. 2000, 3, 457–463. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Naueks, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Wieser, G.; Holtmeier, F.-K.; Smith, W.K. Treelines in a changing global environment. In Trees in a Changing Environment; Springer: Dordrecht, The Netherlands, 2014; pp. 221–263. [Google Scholar]
- Cuevas, J.G. Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J. Ecol. 2000, 88, 840–855. [Google Scholar] [CrossRef]
- Hemp, A. Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob. Change Biol. 2005, 11, 1013–1023. [Google Scholar] [CrossRef]
- Wearne, L.J.; Morgan, J.W. Recent forest encroachment into subalpine grasslands near Mount Hotham, Victoria, Australia. Arct. Antarct. Alpine Res. 2001, 33, 369–377. [Google Scholar] [CrossRef]
- Bader, M.Y.; Ruijten, J.J. A topography-based model of forest cover at the alpine tree line in the tropical Andes. J. Biogeogr. 2008, 35, 711–723. [Google Scholar] [CrossRef]
- Kullman, L.; Öberg, L. Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: A landscape ecological perspective. J. Ecol. 2009, 97, 415–429. [Google Scholar] [CrossRef]
- Liang, E.; Dawadi, B.; Pederson, N.; Eckstein, D. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 2014, 95, 2453–2465. [Google Scholar] [CrossRef] [Green Version]
- Brett, R.B.; Klinka, K. A transition from gap to tree-island regeneration patterns in the subalpine forest of south-coastal British Columbia. Can. J. Forest Res. 1998, 28, 1825–1831. [Google Scholar] [CrossRef]
- Danger, M.; Daufresne, T.; Lucas, F.; Pissard, S.; Lacroix, G. Does Liebig’s law of the minimum scale up from species to communities? Oikos 2008, 117, 1741–1751. [Google Scholar] [CrossRef]
- Choler, P.; Michalet, R.; Callaway, R.M. Facilitation and competition on gradients in alpine plant communities. Ecology 2001, 82, 3295–3308. [Google Scholar] [CrossRef]
- Yu, D.; Wang, Q.; Wang, X.; Dai, L.; Li, M. Microsite Effects on Physiological Performance of Betula ermanii at and Beyond an Alpine Treeline Site on Changbai Mountain in Northeast China. Forests 2019, 10, 400. [Google Scholar] [CrossRef]
- Li, X.; Liang, E.; Gricar, J.; Rossi, S.; Cufar, K.; Ellison, A. Critical Minimum Temperature Limits Xylogenesis and Maintains Treelines on the Tibetan Plateau. Available online: https://www.biorxiv.org/content/early/2016/12/13/093781.full.pdf (accessed on 7 April 2019).
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Renard, S.M.; McIntire, E.J.; Fajardo, A. Winter conditions–not summer temperature–influence establishment of seedlings at white spruce alpine treeline in Eastern Quebec. J. Veg. Sci. 2016, 27, 29–39. [Google Scholar] [CrossRef]
- Marzano, R.; Garbarino, M.; Marcolin, E.; Pividori, M.; Lingua, E. Deadwood anisotropic facilitation on seedling establishment after a stand-replacing wildfire in Aosta Valley (NW Italy). Ecol. Eng. 2013, 51, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, D.; Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 2011, 38, 406–416. [Google Scholar] [CrossRef]
- Keane, R.E.; Tomback, D.F.; Aubry, C.A.; Bower, A.D.; Campbell, E.M.; Cripps, C.L.; Jenkins, M.B.; Mahalovich, M.F.; Manning, M.; McKinney, S.T.; et al. A Range-Wide Restoration Strategy for Whitebark Pine (Pinus albicaulis); General Technical Report RMRS-GTR-279; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2012; 108p.
- Fattorini, M. Establishment of transplants on machine-graded ski runs above timberline in the Swiss Alps. Restor. Ecol. 2001, 9, 119–126. [Google Scholar] [CrossRef]
- Vanha-Majamaa, I.; Lilja, S.; Ryöma, R.; Kotiaho, J.S.; Laaka-Lindberg, S. Rehabilitating boreal forest structure and species composition in Finland through logging, dead wood creation and fire: The EVO experiment. For. Ecol. Manag. 2007, 250, 77–88. [Google Scholar] [CrossRef]
Microsite Type | Number Observations | Temperature Range, °C (mean/st.dev.) | Precipitation Range, cm (mean/st.dev.) | Elevation Range, m (mean/st.dev.) | Microsite Characteristics |
---|---|---|---|---|---|
Wood | 12 | 0.1–5.0 (3.06/1.78) | 86–439 (227/93.3) | 873–3300 (1814/862) | Seedlings growing in decayed wood lying on ground. |
Convex | 10 | −2.4–5.0 (2.77/1.65) | 66–350 (208/99.8) | 1195–3100 (1964/529) | Seedlings growing on elevations or mounds on ground surface. |
Concave | 11 | −3.6–8 (1.37/4.1) | 14–167 (87.4/34.5) | 460–4200 (2185/901) | Seedlings growing in depressions, valleys, and furrows in the ground surface. |
Object | 19 | −4.0–12 (6.1/4.98) | 22–225 (123/55.6) | 700–4100 (2465/896) | Association of seedlings with trees, plants, wood, or rocks. |
Climate Category | Dominant Genus Noted, Typical Site Stress Ameliorated by Microsite | Noted upward Migration, Seedling Density, Seedling Survival Trends, Microsite Association | Noted Physiologic Response [2,27,28] |
---|---|---|---|
Warm & wet (wood/object/convex–no dominance) | Six species, no species dominance, moderate snow pack, moist | Seedling regeneration limited by humus late snow melt. Seedling regeneration greater on wood, object, and convex sites as compared to adjacent substrates. | Ample carbon assimilation. |
Warm & dry (object) | Pinus Drought, fire | Greater seedling regeneration in proximity of trees or other objects; “low”, “downward”, and “unlikely”. | Ample carbon assimilation, photoinhibition, drought stress. |
Cold & wet (convexity/wood) | Picea, Abies, Tsuga, high spring snowpack, low summer soil moisture | Seedling regeneration occurs beyond forests; “notable”, “possible”, “continuous recruitment”. | Limits on carbon assimilation, death by snow mold, death by snow damage, infrequent seed crops. |
Cold & dry | Picea, Low growing season moisture and low temperature, high radiation. | Seedling regeneration occurs; “some in depressions”, “some where crypogams are present”. | Limits on carbon assimilation, poor, infrequent seed crops, photoinhibition, infrequent seed crops, drought stress. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, A.C.; Yeakley, J.A. Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide. Forests 2019, 10, 864. https://doi.org/10.3390/f10100864
Johnson AC, Yeakley JA. Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide. Forests. 2019; 10(10):864. https://doi.org/10.3390/f10100864
Chicago/Turabian StyleJohnson, Adelaide C., and J. Alan Yeakley. 2019. "Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide" Forests 10, no. 10: 864. https://doi.org/10.3390/f10100864
APA StyleJohnson, A. C., & Yeakley, J. A. (2019). Microsites and Climate Zones: Seedling Regeneration in the Alpine Treeline Ecotone Worldwide. Forests, 10(10), 864. https://doi.org/10.3390/f10100864