Application of the Energy-Conserving Integration Method to Hybrid Simulation of a Full-Scale Steel Frame
Abstract
:1. Introduction
2. Theory of Energy Conserving Integration
2.1. Integration Method
2.2. Improved Iteration for Hybrid Simulation
2.3. FE Program
3. Hybrid Test
3.1. Experimental Setup
3.2. Software Validation
3.3. Analysis of Reduction Factor for Iteration
3.4. Test Results and Discussions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, B.; Deng, L.; Yang, X. Stability of central difference method for dynamic real-time substructure testing. Earthq. Eng. Struct. Dyn. 2009, 38, 1649–1663. [Google Scholar] [CrossRef]
- Mosqueda, G.; Ahmadizadeh, M. Iterative implicit integration procedure for hybrid simulation of large nonlinear structures. Earthq. Eng. Struct. Dyn. 2011, 40, 945–960. [Google Scholar] [CrossRef]
- Mosqueda, G.; Ahmadizadeh, M. Implicit numerical integration in hybrid simulation with iteration strategy for experimental substructures. In Proceedings of the 2009 American Control Conference, ACC09, St. Louis, MO, USA, 10–12 June 2009; pp. 5241–5246.
- Chang, S.Y.; Sung, Y.C. Nonlinear error propagation analysis of implicit pseudodynamic algorithm. J. Chin. Inst. Eng. 2006, 29, 639–653. [Google Scholar] [CrossRef]
- Gomez, H.P.; Hughes, T.J.R. Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 2011, 230, 5310–5327. [Google Scholar] [CrossRef]
- Yang, J.S.; Xia, P.Q. Energy conserving and decaying algorithms for corotational finite element nonlinear dynamic responses of thin shells. Sci. China Technol. Sci. 2012, 55, 3311–3321. [Google Scholar] [CrossRef]
- Pan, T.L.; Wu, B.; Guo, L.N.; Chen, Y.S. Application of energy conserving step-by-step integration algorithm in dynamic analysis of engineering structures. Eng. Mech. 2014, 21–27. (In Chinese) [Google Scholar]
- Krenk, S.; Nielsen, M.B. Hybrid state-space time integration of rotating beams. Comput. Methods Appl. Mech. Eng. 2012, 213, 243–254. [Google Scholar] [CrossRef]
- Nakashima, M.; Kaminosono, T.; Ishida, M.; Ando, K. Integration techniques for substructure pseudo-dynamic test. In Proceedings of the 4th US National Conference on Earthquake Engineering, Palm Springs, CA, USA, 20–24 May 1990.
- Ghaboussi, J.; Yun, G.J.; Hashash, Y.M.A. A novel predictor–corrector algorithm for sub-structure pseudo-dynamic testing. Earthq. Eng. Struct. Dyn. 2006, 35, 453–476. [Google Scholar] [CrossRef]
- Chang, S.Y.; Yang, Y.S.; Hsu, C.W. A family of explicit algorithms for general pseudodynamic testing. Earthq. Eng. Eng. Vib. 2011, 10, 51–64. [Google Scholar] [CrossRef]
- Chen, C.; Ricles, J.M.; Marullo, T.M.; Mercan, O. Real time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthq. Eng. Struct. Dyn. 2009, 38, 23–44. [Google Scholar] [CrossRef]
- Deng, L. Numerical Stability Analysis of Substructure Testing; Harbin Institute of Technology: Harbin, China, 2011. [Google Scholar]
- Li, Y.; Wu, B.; Ou, J. Stability of average acceleration method for structures with nonlinear damping. Earthq. Eng. Eng. Vib. 2006, 5, 87–92. [Google Scholar] [CrossRef]
- Tianlin, P.; Bin, W. Stability of implicit midpoint algorithm applied to nonlinear damping structure. J. Vib. Shock 2013, 32, 38–42. (In Chinese) [Google Scholar]
- Simo, J.C.; Tarnow, N. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys. ZAMP 1992, 43, 757–792. [Google Scholar] [CrossRef]
- Galvanetto, U.; Crisfieldm, M.A. An Energy-Conserving Co-Rotational Procedure for the Dynamics of Planar Beam Structures. Int. J. Numer. Methods Eng. 1996, 39, 2265–2282. [Google Scholar] [CrossRef]
- Almeida, F.S.; Awruch, A.M. Corotational nonlinear dynamic analysis of laminated composite shells. Finite Elem. Anal. Des. 2011, 47, 1131–1145. [Google Scholar] [CrossRef]
- Romero, I. An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics. Comput. Mech. 2012, 50, 603–610. [Google Scholar] [CrossRef]
- Noels, L.; Stainier, L.; Ponthot, J.P. A first-order energy-dissipative momentum-conserving scheme for elasto-plasticity using the variational updates formulation. Comput. Methods Appl. Mech. Eng. 2008, 197, 706–726. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.D. Numerical Methods for Ordinary Differential Systems; John Willey&Son: London, UK, 1997. [Google Scholar]
- Shing, P.S.B.; Vannan, M.T. Implicit time integration for pseudo-dynamic tests: Convergence and energy dissipation. Earthq. Eng. Struct. Dyn. 1991, 20, 809–819. [Google Scholar] [CrossRef]
- Simo, J.C.; Hughes, T.J.R. Computational Inelasticity; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Schellenberg, A.; Kim, H.K.; Takahashi, Y.; Fenves, G.L.; Mahin, S.A. OpenFresco Command Language Manual; Version: 2.6; University of California at Berkeley: Berkeley, CA, USA, 2009. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Wu, B.; Chen, Y.; Xu, G. Application of the Energy-Conserving Integration Method to Hybrid Simulation of a Full-Scale Steel Frame. Algorithms 2016, 9, 35. https://doi.org/10.3390/a9020035
Pan T, Wu B, Chen Y, Xu G. Application of the Energy-Conserving Integration Method to Hybrid Simulation of a Full-Scale Steel Frame. Algorithms. 2016; 9(2):35. https://doi.org/10.3390/a9020035
Chicago/Turabian StylePan, Tianlin, Bin Wu, Yongsheng Chen, and Guoshan Xu. 2016. "Application of the Energy-Conserving Integration Method to Hybrid Simulation of a Full-Scale Steel Frame" Algorithms 9, no. 2: 35. https://doi.org/10.3390/a9020035
APA StylePan, T., Wu, B., Chen, Y., & Xu, G. (2016). Application of the Energy-Conserving Integration Method to Hybrid Simulation of a Full-Scale Steel Frame. Algorithms, 9(2), 35. https://doi.org/10.3390/a9020035