Comparison of Linear MPC and Explicit MPC for Battery Cell Balancing Control
Abstract
1. Introduction
- A linear MPC controller is designed to regulate the SOC of battery cells to track a target SOC level.
- An explicit MPC controller is also designed to perform the same balancing task, whose performance and computation requirements are compared with the linear MPC.
- To provide insights on the scalability and real-time implementability of explicit MPC, an analysis is conducted on how the offline computation effort for the explicit MPC approach changes as the prediction horizon increases.
2. Formulation
2.1. System Model
2.2. Linear MPC
2.3. Explicit MPC
3. Simulation Setup and Results
3.1. System Settings
3.2. Simulation Results
3.3. Computation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lutsey, N. Global climate change mitigation potential from a transition to electric vehicles. Int. Counc. Clean Transp. 2015, 2015, 5. [Google Scholar]
- Hu, X.; Yuan, H.; Zou, C.; Li, Z.; Zhang, L. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus. IEEE Trans. Veh. Technol. 2018, 67, 10319–10329. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Zhang, L.; Liu, P.; Zhang, Z. A novel consistency evaluation method for series-connected battery systems based on real-world operation data. IEEE Trans. Transp. Electrif. 2020, 7, 437–451. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Z.; Zhou, Z.; Wang, X.; Liaw, B. Impact of battery cell imbalance on electric vehicle range. Green Energy Intell. Transp. 2022, 1, 100025. [Google Scholar] [CrossRef]
- Dubarry, M.; Vuillaume, N.; Liaw, B.Y. Origins and accommodation of cell variations in Li-ion battery pack modeling. Int. J. Energy Res. 2010, 34, 216–231. [Google Scholar] [CrossRef]
- De Castro, R.; Pereira, H.; Araújo, R.E.; Barreras, J.V.; Pangborn, H.C. qTSL: A multilayer control framework for managing capacity, temperature, stress, and losses in hybrid balancing systems. IEEE Trans. Control Syst. Technol. 2021, 30, 1228–1243. [Google Scholar] [CrossRef]
- Hoekstra, F.S.J.; Bergveld, H.J.; Donkers, M. Range maximisation of electric vehicles through active cell balancing using reachability analysis. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 1567–1572. [Google Scholar]
- Hoekstra, F.S.J.; Ribelles, L.W.; Bergveld, H.J.; Donkers, M. Real-time range maximisation of electric vehicles through active cell balancing using model-predictive control. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 2219–2224. [Google Scholar]
- Chen, J.; Behal, A.; Li, C. Active Cell Balancing by Model Predictive Control for Real Time Range Extension. In Proceedings of the 2021 IEEE Conference on Decision and Control, Austin, TX, USA, 13–15 December 2021. [Google Scholar]
- Chen, J.; Behal, A.; Li, Z.; Li, C. Active Battery Cell Balancing by Real Time Model Predictive Control for Extending Electric Vehicle Driving Range. IEEE Trans. Auto. Sci. Eng. 2024, 21, 4003–4015. [Google Scholar] [CrossRef]
- Anderson, R.D.; Zane, R.; Plett, G.; Maksimovic, D.; Smith, K.; Trimboli, M.S. Life Balancing—A Better Way to Balance Large Batteries; Technical Report, SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Einhorn, M.; Roessler, W.; Fleig, J. Improved performance of serially connected Li-ion batteries with active cell balancing in electric vehicles. IEEE Trans. Veh. Technol. 2011, 60, 2448–2457. [Google Scholar] [CrossRef]
- Daowd, M.; Omar, N.; Van Den Bossche, P.; Van Mierlo, J. Passive and active battery balancing comparison based on MATLAB simulation. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; pp. 1–7. [Google Scholar]
- Mestrallet, F.; Kerachev, L.; Crebier, J.C.; Collet, A. Multiphase interleaved converter for lithium battery active balancing. IEEE Trans. Power Electron. 2013, 29, 2874–2881. [Google Scholar] [CrossRef]
- Shang, Y.; Xia, B.; Zhang, C.; Cui, N.; Yang, J.; Mi, C.C. An automatic equalizer based on forward–flyback converter for series-connected battery strings. IEEE Trans. Ind. Electron. 2017, 64, 5380–5391. [Google Scholar] [CrossRef]
- Nie, J.; Fu, R.; Cai, C.; Ma, J.; Shu, Z.; Ma, L. A high efficiency battery equalizing circuit based on half bridge topology with multiport transformer. IEEE Trans. Ind. Electron. 2023, 71, 2522–2532. [Google Scholar] [CrossRef]
- Wang, C.; Yin, G.; Lin, F.; Polis, M.P.; Zhang, C.; Jiang, J. Balanced control strategies for interconnected heterogeneous battery systems. IEEE Trans. Sustain. Energy 2015, 7, 189–199. [Google Scholar] [CrossRef]
- Xu, J.; Cao, B.; Li, S.; Wang, B.; Ning, B. A hybrid criterion based balancing strategy for battery energy storage systems. Energy Procedia 2016, 103, 225–230. [Google Scholar] [CrossRef]
- Gao, Z.; Chin, C.; Toh, W.; Chiew, J.; Jia, J. State-of-charge estimation and active cell pack balancing design of lithium battery power system for smart electric vehicle. J. Adv. Transp. 2017, 2017, 6510747. [Google Scholar] [CrossRef]
- Ouyang, Q.; Han, W.; Zou, C.; Xu, G.; Wang, Z. Cell balancing control for lithium-ion battery packs: A hierarchical optimal approach. IEEE Trans. Ind. Inform. 2019, 16, 5065–5075. [Google Scholar] [CrossRef]
- Narayanaswamy, S.; Park, S.; Steinhorst, S.; Chakraborty, S. Multi-pattern active cell balancing architecture and equalization strategy for battery packs. In Proceedings of the International Symposium on Low Power Electronics and Design, Seattle, WA, USA, 23–25 July 2018; pp. 1–6. [Google Scholar]
- Meng, J.; Ricco, M.; Luo, G.; Swierczynski, M.; Stroe, D.I.; Stroe, A.I.; Teodorescu, R. An overview and comparison of online implementable SOC estimation methods for lithium-ion battery. IEEE Trans. Ind. Appl. 2017, 54, 1583–1591. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Chen, S.; Wang, T. Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation. Energy 2019, 166, 908–917. [Google Scholar] [CrossRef]
- Petri, A.M.; Petreuș, D. Balancing and SOC Estimation in a Battery Management System for Electric Vehicle. In Proceedings of the 2021 44th International Spring Seminar on Electronics Technology (ISSE), Bautzen, Germany, 5–9 May 2021; pp. 1–6. [Google Scholar]
- Yildirim, B.; Elgendy, M.; Smith, A.; Pickert, V. Evaluation and comparison of battery cell balancing methods. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; pp. 1–5. [Google Scholar]
- Rawlings, J.B.; Mayne, D.Q.; Diehl, M.M. Model Predictive Control: Theory, Computation, and Design; Nob Hill Publishing: Madison, WI, USA, 2020; Volume 2. [Google Scholar]
- Bishop, R.C.D.R.H. Modern Control Systems; Pearson Education, Inc.: London, UK, 2011. [Google Scholar]
- Chen, C.T. Linear System Theory and Design; Saunders College Publishing: Philadelphia, PA, USA, 1984. [Google Scholar]
- Bemporad, A.; Morari, M.; Dua, V.; Pistikopoulos, E.N. The explicit linear quadratic regulator for constrained systems. Automatica 2002, 38, 3–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Hu, L.; Huang, C. Active cell balancing of lithium-ion battery pack based on average state of charge. Int. J. Energy Res. 2020, 44, 2535–2548. [Google Scholar] [CrossRef]
- Cao, Y.; Qahouq, J.A.A. Hierarchical SOC balancing controller for battery energy storage system. IEEE Trans. Ind. Electron. 2020, 68, 9386–9397. [Google Scholar] [CrossRef]
- Chauhan, S.R.; Kumar, K.; Nadarajan, S.; Vaiyapuri, V.; Halick, M.; Sathik, M. Effect of Unbalanced Cells in Lithium-ion Battery Pack Performance and SOC Estimation. In Proceedings of the 2024 12th International Conference on Internet of Everything, Microwave, Embedded, Communication and Networks (IEMECON), Jaipur, India, 24–26 October 2024; pp. 1–6. [Google Scholar]
N | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Regions | 49 | 343 | 2401 | 16,807 | 117,649 |
Offline Time | 0.079 s | 1.747 s | 30.927 s | 479.361 s | 6892.412 s |
Online Time | 0.109 s | 0.114 s | 0.115 s | 0.116 s | 0.637 s |
2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|
Region | 3125 | 16,807 | 59,049 | 161,051 | 371,293 |
Offline Time | 47.036 s | 479.361 s | 3122.997 s | 15,869.483 s | 60,357.946 s |
Online Time | 0.118 s | 0.116 s | 0.140 s | 0.147 s | 0.162 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Chen, J. Comparison of Linear MPC and Explicit MPC for Battery Cell Balancing Control. Algorithms 2025, 18, 548. https://doi.org/10.3390/a18090548
Yang W, Chen J. Comparison of Linear MPC and Explicit MPC for Battery Cell Balancing Control. Algorithms. 2025; 18(9):548. https://doi.org/10.3390/a18090548
Chicago/Turabian StyleYang, Wanqun, and Jun Chen. 2025. "Comparison of Linear MPC and Explicit MPC for Battery Cell Balancing Control" Algorithms 18, no. 9: 548. https://doi.org/10.3390/a18090548
APA StyleYang, W., & Chen, J. (2025). Comparison of Linear MPC and Explicit MPC for Battery Cell Balancing Control. Algorithms, 18(9), 548. https://doi.org/10.3390/a18090548