A New Geometric Algebra-Based Classification of Hand Bradykinesia in Parkinson’s Disease Measured Using a Sensory Glove
Abstract
1. Introduction
2. Related Work
3. Materials
3.1. Participants
3.2. Sensory Glove
4. Methods
4.1. SG Calibration
4.2. Hand Motor Tasks
4.3. Measurement Protocol
4.4. Data Processing
4.4.1. Classic Feature Extraction
- The FT task: the thumb–index distance (cm);
- The HG task: the flex/extension of the PIP joints (degrees) for the index, middle, ring, and little fingers (the thumb was excluded since, due to its anatomy, it does not fully synergistically support hand closing and showed a less stable signal);
- The PS task: the 3D spatial coordinates (cm) assumed by the most distal phalanx of the thumb, which is capable of reflecting overall motion (the other fingers were considered too, but no relevant information was added).
4.4.2. A Geometric Algebra-Based Approach
4.4.3. Geometric Feature Extraction
- It provided information about the direction of motion via the vectors that defined it;
- It served as a local approximation of the curve, enabling analysis of the overall shape without the need to examine every point along the path;
- It used simple geometric shapes (i.e., GA ratios) that were easy to manipulate and compare with other triangles (e.g., between two movements) with lower computational effort than comparing individual points, especially for complex trajectories.
- Consider two consecutive points, and , along the trajectory, and compute the vector between them.
- Construct an oriented triangle using two consecutive vectors, and , by “joining” the head of with the tail of . This is repeated across the entire trajectory, yielding a sequence of consecutive triangles (Figure 4b,c).
- Consider two consecutive vectors, and , to compute their dot product and cross product, which provide information about their relative orientations and angular difference.
4.4.4. Feature Selection
4.4.5. Classification
5. Results and Discussion
5.1. Classic Features Selected
5.2. Geometric Features Selected
5.3. Machine Learning
5.3.1. Classification with Classic Features
5.3.2. Classification with Mixed Features
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SG | sensory glove |
PD | Parkinson’s disease |
MDS-UPDRS | Movement Disorder Society Unified Parkinson Disease Rating Scale |
HC | healthy control |
k-NN | k-Nearest Neighbors |
SVM | Support Vector Machine |
NB | Naive Bayes |
EM | electromagnetic |
IMU | inertial measurement unit |
MCP | metacarpophalangeal |
IP | interphalangeal |
FT | finger tapping |
HG | hand gripping |
PS | prono-supination |
PCA | Principal Component Analysis |
RoM | range of motion |
PI | performance index |
GA | geometric algebra |
RBF | Radial Basis Function |
ROC | Receiver Operating Characteristic |
AUC | Area Under the Curve |
References
- Saggio, G.; Orengo, G.; Leggieri, A. Sensory Glove and Surface EMG with Suitable Conditioning Electronics for Extended Monitoring and Functional Hand Assessment. In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies, Rome, Italy, 21–23 February 2016; SCITEPRESS—Science and and Technology Publications: Setúbal, Portugal, 2016; pp. 206–213. [Google Scholar]
- Mohan, A.; Tharion, G.; Kumar, R.K.; Devasahayam, S.R. An Instrumented Glove for Monitoring Hand Function. Rev. Sci. Instrum. 2018, 89, 105001. [Google Scholar] [CrossRef] [PubMed]
- Saggio, G.; Lazzaro, A.; Sbernini, L.; Carrano, F.M.; Passi, D.; Corona, A.; Panetta, V.; Gaspari, A.L.; Di Lorenzo, N. Objective Surgical Skill Assessment: An Initial Experience by Means of a Sensory Glove Paving the Way to Open Surgery Simulation? J. Surg. Educ. 2015, 72, 910–917. [Google Scholar] [CrossRef]
- Saggio, G.; Santosuosso, G.L.; Cavallo, P.; Pinto, C.A.; Petrella, M.; Giannini, F.; Di Lorenzo, N.; Lazzaro, A.; Corona, A.; D’Auria, F.; et al. Gesture Recognition and Classification for Surgical Skill Assessment. In Proceedings of the 2011 IEEE International Symposium on Medical Measurements and Applications, Bari, Italy, 30–31 May 2011; IEEE: New York, NY, USA, 2011; pp. 662–666. [Google Scholar]
- Oess, N.P.; Wanek, J.; Curt, A. Design and Evaluation of a Low-Cost Instrumented Glove for Hand Function Assessment. J. Neuroeng. Rehabil. 2012, 9, 2. [Google Scholar] [CrossRef]
- Kotsavasiloglou, C.; Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M. Machine Learning-Based Classification of Simple Drawing Movements in Parkinson’s Disease. Biomed. Signal Process Control 2017, 31, 174–180. [Google Scholar] [CrossRef]
- Dutta, D.; Modak, S.; Kumar, A.; Roychowdhury, J.; Mandal, S. Bayesian Network Aided Grasp and Grip Efficiency Estimation Using a Smart Data Glove for Post-Stroke Diagnosis. Biocybern. Biomed. Eng. 2017, 37, 44–58. [Google Scholar] [CrossRef]
- Saggio, G.; Sbernini, L.; De Leo, A.; Awaid, M.; Di Lorenzo, N.; Gaspari, A.L. Assessment of Hand Rehabilitation after Hand Surgery by Means of a Sensory Glove. In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies, Rome, Italy, 21–23 February 2016; SciTePress: Science and Technology Publications: Setúbal, Portugal, 2016; pp. 187–194. [Google Scholar]
- Zhu, Y.; Gong, W.; Chu, K.; Wang, X.; Hu, Z.; Su, H. A Novel Wearable Soft Glove for Hand Rehabilitation and Assistive Grasping. Sensors 2022, 22, 6294. [Google Scholar] [CrossRef]
- Henderson, J.; Condell, J.; Connolly, J.; Kelly, D.; Curran, K. Review of Wearable Sensor-Based Health Monitoring Glove Devices for Rheumatoid Arthritis. Sensors 2021, 21, 1576. [Google Scholar] [CrossRef]
- Meng, F.; Liu, C.; Li, Y.; Hao, H.; Li, Q.; Lyu, C.; Wang, Z.; Ge, G.; Yin, J.; Ji, X.; et al. Personalized and Safe Soft Glove for Rehabilitation Training. Electronics 2023, 12, 2531. [Google Scholar] [CrossRef]
- Caeiro-Rodríguez, M.; Otero-González, I.; Mikic-Fonte, F.A.; Llamas-Nistal, M. A Systematic Review of Commercial Smart Gloves: Current Status and Applications. Sensors 2021, 21, 2667. [Google Scholar] [CrossRef] [PubMed]
- Demolder, C.; Molina, A.; Hammond, F.L.; Yeo, W.-H. Recent Advances in Wearable Biosensing Gloves and Sensory Feedback Biosystems for Enhancing Rehabilitation, Prostheses, Healthcare, and Virtual Reality. Biosens. Bioelectron. 2021, 190, 113443. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s Disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Leite Silva, A.B.R.; Gonçalves de Oliveira, R.W.; Diógenes, G.P.; de Castro Aguiar, M.F.; Sallem, C.C.; Lima, M.P.P.; de Albuquerque Filho, L.B.; Peixoto de Medeiros, S.D.; Penido de Mendonça, L.L.; de Santiago Filho, P.C.; et al. Premotor, Nonmotor and Motor Symptoms of Parkinson’s Disease: A New Clinical State of the Art. Ageing Res. Rev. 2023, 84, 101834. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jenkins, M.E.; Naish, M.D.; Trejos, A.L. The Measurement and Analysis of Parkinsonian Hand Tremor. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA, 24–27 February 2016; IEEE: New York, NY, USA, 2016; pp. 414–417. [Google Scholar]
- Goetz, C.G.; Choi, D.; Guo, Y.; Stebbins, G.T.; Mestre, T.A.; Luo, S. It Is as It Was: MDS-UPDRS Part III Scores Cannot Be Combined with Other Parts to Give a Valid Sum. Mov. Disord. 2023, 38, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Trundell, D.; Davies, E.W.; Barrett, L.; Zanigni, S.; Shariati, N.; Rogers, R.; Monnet, A.; Moore, E.; Pross, N.; Pagano, G.; et al. Estimation of and Clinical Consensus on the Meaningful Motor Progression Threshold on MDS-UPDRS Part III. J. Park. Dis. 2025, 15, 97–110. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Shin, J.; Matsumoto, M.; Maniruzzaman, M.; Hasan, M.A.M.; Hirooka, K.; Hagihara, Y.; Kotsuki, N.; Inomata-Terada, S.; Terao, Y.; Kobayashi, S. Classification of Hand-Movement Disabilities in Parkinson’s Disease Using a Motion-Capture Device and Machine Learning. IEEE Access 2024, 12, 52466–52479. [Google Scholar] [CrossRef]
- Maetzler, W.; Mirelman, A.; Pilotto, A.; Bhidayasiri, R. Identifying Subtle Motor Deficits Before Parkinson’s Disease Is Diagnosed: What to Look For? J. Park. Dis. 2024, 14, S287–S296. [Google Scholar] [CrossRef]
- Martinez, F.; Contreras-Corredor, S.A.; Salazar-Acosta, I. Parkinsonian Hand Tremor Characterization from Magnified Video Sequences. In Proceedings of the 14th International Symposium on Medical Information Processing and Analysis, Mazatlán, Mexico, 24–26 October 2018; Romero, E., Lepore, N., Brieva, J., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 43. [Google Scholar]
- Aich, S.; Youn, J.; Chakraborty, S.; Pradhan, P.M.; Park, J.; Park, S.; Park, J. A Supervised Machine Learning Approach to Detect the On/Off State in Parkinson’s Disease Using Wearable Based Gait Signals. Diagnostics 2020, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Bhavana, C.; Gopal, J.; Raghavendra, P.; Vanitha, K.M.; Talasila, V. Techniques of Measurement for Parkinson’s Tremor Highlighting Advantages of Embedded IMU over EMG. In Proceedings of the 2016 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India, 8–9 April 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Li, H.; Zecca, M.; Huang, J. Evaluating the Utility of Wearable Sensors for the Early Diagnosis of Parkinson Disease: Systematic Review. J. Med. Internet Res. 2025, 27, e69422. [Google Scholar] [CrossRef]
- Rovini, E.; Maremmani, C.; Cavallo, F. How Wearable Sensors Can Support Parkinson’s Disease Diagnosis and Treatment: A Systematic Review. Front. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.; Yan, W. Dynamic Hand Gesture Recognition Based on Signals from Specialized Data Glove and Deep Learning Algorithms. IEEE Trans. Instrum. Meas. 2021, 70, 2509014. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Wu, Y.; Peng, J.; Xu, Y.; Li, H.; He, H.; Tai, H. A Finger Motion Monitoring Glove for Hand Rehabilitation Training and Assessment Based on Gesture Recognition. IEEE Sens. J. 2023, 23, 13789–13796. [Google Scholar] [CrossRef]
- Li, Y.; Yin, J.; Liu, S.; Xue, B.; Shokoohi, C.; Ge, G.; Hu, M.; Li, T.; Tao, X.; Rao, Z.; et al. Learning Hand Kinematics for Parkinson’s Disease Assessment Using a Multimodal Sensor Glove. Adv. Sci. 2023, 10, 2206982. [Google Scholar] [CrossRef] [PubMed]
- Manuri, F.; Decataldo, F.; Sanna, A.; Brizzi, P. A Comparison of Two Interaction Paradigms for Training Low Cost Automation Assembly in Virtual Environments. Information 2023, 14, 340. [Google Scholar] [CrossRef]
- Halder, R.K.; Uddin, M.N.; Uddin, M.A.; Aryal, S.; Khraisat, A. Enhancing K-Nearest Neighbor Algorithm: A Comprehensive Review and Performance Analysis of Modifications. J. Big Data 2024, 11, 113. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, R.; Lei, Y.; Liao, W.-H.; Cao, H.; Cao, J. Severity Level Diagnosis of Parkinson’s Disease by Ensemble K-Nearest Neighbor under Imbalanced Data. Expert Syst. Appl. 2022, 189, 116113. [Google Scholar] [CrossRef]
- Guido, R.; Ferrisi, S.; Lofaro, D.; Conforti, D. An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review. Information 2024, 15, 235. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Bhatia, M.P.S. SVM Classification to Distinguish Parkinson Disease Patients. In Proceedings of the Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India, Coimbatore, India, 16–17 September 2010; ACM: New York, NY, USA, 2010; pp. 1–6. [Google Scholar]
- Hemachandran, K.; Tayal, S.; George, P.M.; Singla, P.; Kose, U. (Eds.) Bayesian Reasoning and Gaussian Processes for Machine Learning Applications; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003164265. [Google Scholar]
- Langarizadeh, M.; Moghbeli, F. Applying Naive Bayesian Networks to Disease Prediction: A Systematic Review. Acta Inform. Med. 2016, 24, 364–369. [Google Scholar] [CrossRef]
- Bourouhou, A.; Jilbab, A.; Nacir, C.; Hammouch, A. Comparison of Classification Methods to Detect the Parkinson Disease. In Proceedings of the 2016 International Conference on Electrical and Information Technologies (ICEIT), Tangiers, Morocco, 4–7 May 2016; IEEE: New York, NY, USA, 2016; pp. 421–424. [Google Scholar]
- Moshkova, A.; Bukin, V.; Samorodov, A. The Error Evaluation of the Amplitude of Finger Tapping and Pronation/Supination of the Palm Exercises Recorded by Leap Motion. In Proceedings of the 2023 Systems and Technologies of the Digital HealthCare (STDH), Tashkent, Uzbekistan, 4–6 October 2023; IEEE: New York, NY, USA, 2023; pp. 81–83. [Google Scholar]
- Khan, T.; Nyholm, D.; Westin, J.; Dougherty, M. A Computer Vision Framework for Finger-Tapping Evaluation in Parkinson’s Disease. Artif. Intell. Med. 2014, 60, 27–40. [Google Scholar] [CrossRef]
- Agostino, R.; Berardelli, A.; Currà, A.; Accornero, N.; Manfredi, M. Clinical Impairment of Sequential Finger Movements in Parkinson’s Disease. Mov. Disord. 1998, 13, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Carson, N.; Leach, L.; Murphy, K.J. A Re-examination of Montreal Cognitive Assessment (MoCA) Cutoff Scores. Int. J. Geriatr. Psychiatry 2018, 33, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Bhidayasiri, R.; Tarsy, D. Parkinson’s Disease: Hoehn and Yahr Scale. In Movement Disorders: A Video Atlas; Humana Press: Totowa, NJ, USA, 2012; pp. 4–5. [Google Scholar]
- Sacristán, H.E.; Serra Fulles, J.A. The Essentials in Parkinson’s Disease. EC Neurol. 2023, 15, 36–67. [Google Scholar]
- Gupta, I.; Sharma, V.; Kaur, S.; Singh, A.K. PCA-RF: An Efficient Parkinson’s Disease Prediction Model Based on Random Forest Classification. arXiv 2022, arXiv:2203.11287. [Google Scholar]
- Shin, J.H.; Ong, J.N.; Kim, R.; Park, S.; Choi, J.; Kim, H.-J.; Jeon, B. Objective Measurement of Limb Bradykinesia Using a Marker-Less Tracking Algorithm with 2D-Video in PD Patients. Park. Relat. Disord. 2020, 81, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Djaldetti, R.; Ziv, I.; Melamed, E. The Mystery of Motor Asymmetry in Parkinson’s Disease. Lancet Neurol. 2006, 5, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Calado, A.; Roselli, P.; Errico, V.; Magrofuoco, N.; Vanderdonckt, J.; Saggio, G. A Geometric Model-Based Approach to Hand Gesture Recognition. IEEE Trans. Syst. Man. Cybern. Syst. 2022, 52, 6151–6161. [Google Scholar] [CrossRef]
- Dorst, L.; Fontijne, D.; Mann, S. Geometric Algebra for Computer Science (Revised Edition); Morgan Kaufmann: Burlington, MA, USA, 2009; ISBN 9780123749420. [Google Scholar]
- Luzzi, L.; Roselli, P. The Shape of Planar Smooth Gestures and the Convergence of a Gesture Recognizer. Aequ. Math. 2020, 94, 219–233. [Google Scholar] [CrossRef]
- MacFarland, T.W.; Yates, J.M. Mann–Whitney U Test. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer International Publishing: Cham, Switzerland, 2016; pp. 103–132. [Google Scholar]
- Avuçlu, E.; Elen, A. Evaluation of Train and Test Performance of Machine Learning Algorithms and Parkinson Diagnosis with Statistical Measurements. Med. Biol. Eng. Comput. 2020, 58, 2775–2788. [Google Scholar] [CrossRef]
- Ricci, M.; Di Lazzaro, G.; Pisani, A.; Mercuri, N.B.; Giannini, F.; Saggio, G. Assessment of Motor Impairments in Early Untreated Parkinson’s Disease Patients: The Wearable Electronics Impact. IEEE J. Biomed. Health Inform. 2020, 24, 120–130. [Google Scholar] [CrossRef]
- Eskofier, B.M.; Lee, S.I.; Daneault, J.-F.; Golabchi, F.N.; Ferreira-Carvalho, G.; Vergara-Diaz, G.; Sapienza, S.; Costante, G.; Klucken, J.; Kautz, T.; et al. Recent Machine Learning Advancements in Sensor-Based Mobility Analysis: Deep Learning for Parkinson’s Disease Assessment. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: New York, NY, USA, 2016; pp. 655–658. [Google Scholar]
- Nan, T.; Zheng, S.; Qiao, S.; Quan, H.; Gao, X.; Niu, J.; Zheng, B.; Guo, C.; Zhang, Y.; Wang, X.; et al. Deep Learning Quantifies Pathologists’ Visual Patterns for Whole Slide Image Diagnosis. Nat. Commun. 2025, 16, 5493. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Dong, Z.; Liang, K.; Yu, H.; Wang, S.; Liu, X. High-Order Topology for Deep Single-Cell Multiview Fuzzy Clustering. IEEE Trans. Fuzzy Syst. 2024, 32, 4448–4459. [Google Scholar] [CrossRef]
Task → | FT | HG | PS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Feature ↓ | Unit | PD | HC | p-Value | PD | HC | p-Value | PD | HC | p-Value |
Hz | 1.49 | 1.77 | 0.044 | 1.46 | 1.56 | 0.672 | 0.87 | 0.96 | 0.186 | |
cm (FT, PS) ° (HG) | 10.79 | 11.02 | 0.054 | 89.90 | 92.33 | 0.687 | 14.26 | 20.06 | <0.001 | |
cm (FT, PS) ° (HG) | 15.81 | 11.23 | 0.070 | 11.26 | 9.12 | 0.436 | 10.77 | 4.04 | <0.001 | |
cm/s | 68.02 | 94.90 | <0.001 | 846.21 | 910.37 | 0.159 | 108.19 | 149.48 | <0.001 | |
cm/s | 22.39 | 12.26 | <0.001 | 14.97 | 11.48 | 0.122 | 14.26 | 10.57 | 0.001 | |
cm/s | 75.50 | 106.03 | <0.001 | 842.21 | 910.37 | 0.159 | 104.44 | 142.44 | <0.001 | |
cm/s | 20.87 | 13.70 | <0.001 | 14.82 | 11.45 | 0.159 | 15.54 | 11.91 | 0.016 | |
Hz·cm | 12.45 | 20.06 | <0.001 | 126.83 | 139.09 | 0.288 | 15.85 | 20.16 | 0.015 |
Task → | FT | HG | PS | ||||||
---|---|---|---|---|---|---|---|---|---|
Feature ↓ | PD | HC | p-Value | PD | HC | p-Value | PD | HC | p-Value |
1.22 | 1.04 | 0.667 | 1.15 | 1.01 | 0.592 | 1.12 | 0.99 | 0.641 | |
1.09 | 0.948 | 0.024 | 1.03 | 0.982 | 0.849 | 1.09 | 1.05 | 0.339 | |
2.43 | 1.64 | 0.027 | 2.49 | 3.1 | 0.536 | 1.76 | 1.09 | <0.001 | |
1.03 | 0.956 | 0.278 | 1.03 | 0.982 | 0.913 | 1.13 | 1.05 | 0.615 | |
1.73 | 1.06 | 0.042 | 1.28 | 1.34 | 0.491 | 1.20 | 0.99 | 0.289 | |
1.03 | 0.951 | 0.707 | 1.03 | 0.982 | 0.913 | 1.12 | 1.03 | 0.462 | |
1.54 | 1.10 | 0.060 | 1.52 | 1.28 | 0.849 | 1.13 | 1.02 | 0.462 | |
1.04 | 0.976 | 0.664 | 1.07 | 0.99 | 0.656 | 1.16 | 1.04 | 0.977 |
Task → | FT | HG | PS | ||||||
---|---|---|---|---|---|---|---|---|---|
Feature ↓ | PD | HC | p-Value | PD | HC | p-Value | PD | HC | p-Value |
a-Thumb | 0.65 | 0.50 | <0.001 | 0.48 | 0.37 | 0.004 | 1.19 | 1.19 | 0.126 |
a-Index | 0.70 | 0.60 | 0.015 | 0.43 | 0.28 | 0.289 | 0.94 | 0.78 | 0.027 |
a-Middle | - | - | - | 0.43 | 0.38 | 0.110 | 1.09 | 1.09 | 0.949 |
a-Ring | - | - | - | 0.40 | 0.37 | 0.388 | 1.1 | 0.67 | 0.039 |
a-Little | - | - | - | 0.44 | 0.42 | 0.004 | 1.11 | 1.18 | 0.126 |
Model | Accuracy (Training) [%] | Accuracy (Testing) [%] | Prediction Speed [Predictions/s] | Training Time [s] |
---|---|---|---|---|
K-NN | 78.54 | 73.76 | 1415 | 1.23 |
NB | 83.26 | 77.58 | 591 | 6.58 |
SVM | 78.54 | 68.14 | 2681 | 1.20 |
Model | Accuracy (Training) [%] | Accuracy (Testing) [%] | Prediction Speed [Predictions/s] | Training Time [s] |
---|---|---|---|---|
K-NN | 86.67 | 82.67 | 1766.66 | 0.376 |
NB | 82.21 | 73.56 | 4628.36 | 1.81 |
SVM | 88.54 | 79.22 | 1676.55 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saggio, G.; Roselli, P.; Pietrosanti, L.; Romano, A.; Arangino, N.; Patera, M.; Suppa, A. A New Geometric Algebra-Based Classification of Hand Bradykinesia in Parkinson’s Disease Measured Using a Sensory Glove. Algorithms 2025, 18, 527. https://doi.org/10.3390/a18080527
Saggio G, Roselli P, Pietrosanti L, Romano A, Arangino N, Patera M, Suppa A. A New Geometric Algebra-Based Classification of Hand Bradykinesia in Parkinson’s Disease Measured Using a Sensory Glove. Algorithms. 2025; 18(8):527. https://doi.org/10.3390/a18080527
Chicago/Turabian StyleSaggio, Giovanni, Paolo Roselli, Luca Pietrosanti, Alessandro Romano, Nicola Arangino, Martina Patera, and Antonio Suppa. 2025. "A New Geometric Algebra-Based Classification of Hand Bradykinesia in Parkinson’s Disease Measured Using a Sensory Glove" Algorithms 18, no. 8: 527. https://doi.org/10.3390/a18080527
APA StyleSaggio, G., Roselli, P., Pietrosanti, L., Romano, A., Arangino, N., Patera, M., & Suppa, A. (2025). A New Geometric Algebra-Based Classification of Hand Bradykinesia in Parkinson’s Disease Measured Using a Sensory Glove. Algorithms, 18(8), 527. https://doi.org/10.3390/a18080527