A Novel ECC-Based Method for Secure Image Encryption
Abstract
1. Introduction
2. Preliminaries and Related Works
2.1. Common Chaotic Maps Used in Image Encryption
2.2. Image Shuffling and Unshuffling
2.3. Elliptic Curve over Finite Fields
2.4. Related Works
3. Proposed Method
3.1. Key Management Considerations
3.2. BytesArray Generation for Image Encryption
- The sender selects an initialization value , defined as , which serves as the initial input to the iterative procedure.
- For next iteration , the mapping function is applied to the value from the previous step, along with the session key , generating a new point on the elliptic curve.
- The coordinates and of the generated point are used to compute the subsequent value , where ⊕ denotes the bitwise XOR operation.
- The byte representations of are sequentially appended to a growing byte sequence, denoted as .
Algorithm 1 Mapping algorithm. |
Require: An elliptic curve , the session key , and an integer block m. Ensure: The mapping point
|
3.3. Image Shuffling and Unshuffling
Algorithm 2 Two-dimensional image shuffling using permutation. |
Require: Byte matrix , original image Ensure: Shuffled image
|
3.4. Encryption Process
4. Security and Performance Analysis
4.1. Key Space Analysis
4.2. Key Sensitivity Analysis
4.3. Security Against Chosen-Plaintext Attack (CPA)
4.4. Resistance to Chosen-Ciphertext Attacks (CCAs)
4.5. Correlation Coefficients
4.6. Histogram Uniformity and Statistical Analysis
4.7. Entropy Analysis
4.8. Differential Analysis
4.8.1. Unified Average Changing Intensity
4.8.2. Number of Pixels Change Rate
4.9. Gray Level Co-Occurrence Matrix
4.9.1. Contrast
4.9.2. Energy
4.9.3. Homogeneity
4.10. Robustness Against Noise and Cropping Attacks
4.10.1. Noise Attack Analysis
4.10.2. Cropping Attack Analysis
4.11. NIST Statistical Tests
4.12. Execution Time at Varying Image Sizes
4.13. Comparison with State-of-the-Art Schemes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECC | Elliptic Curve Cryptography |
EC | Elliptic Curve |
NIST | National Institute of Standards and Technology |
ECDHP | Elliptic Curve Diffie–Hellman Protocol |
CPA | Chosen Plaintext Attack |
CCA | Chosen Ciphertext Attack |
ECDLP | Elliptic Discrete Logarithm Problem |
AES | Advanced Encryption Standard |
UACI | Unified Average Changing Intensity |
NPCR | Number of Pixels Change Rate |
PSNR | Peak Signal-to-Noise Ratio |
GLCM | Gray Level Co-occurrence Matrix |
References
- SaberiKamarposhti, M.; Ghorbani, A.; Yadollahi, M. A comprehensive survey on image encryption: Taxonomy, challenges, and future directions. Chaos Solitons Fractals 2024, 178, 114361. [Google Scholar] [CrossRef]
- Alghamdi, Y.; Munir, A. Image Encryption Algorithms: A Survey of Design and Evaluation Metrics. J. Cybersecur. Priv. 2024, 4, 126–152. [Google Scholar] [CrossRef]
- Hosny, K.M.; Zaki, M.A.; Lashin, N.A.; Fouda, M.M.; Hamza, H.M. Multimedia Security Using Encryption: A Survey. IEEE Access 2023, 11, 63027–63056. [Google Scholar] [CrossRef]
- Khan, M.R.; Upreti, K.; Alam, M.I.; Khan, H.; Siddiqui, S.T.; Haque, M.; Parashar, J. Analysis of Elliptic Curve Cryptography & RSA. J. ICT Stand. 2023, 11, 355–378. [Google Scholar] [CrossRef]
- Lahraoui, Y.; Lazaar, S.; Amal, Y.; Nitaj, A. Securing Data Exchange with Elliptic Curve Cryptography: A Novel Hash-Based Method for Message Mapping and Integrity Assurance. Cryptography 2024, 8, 23. [Google Scholar] [CrossRef]
- Shakiba, A. A randomized CPA-secure asymmetric-key chaotic color image encryption scheme based on the Chebyshev mappings and one-time pad. J. King Saud Univ.-Comput. Inf. Sci. 2021, 33, 562–571. [Google Scholar] [CrossRef]
- Sheng, Q.; Fu, C.; Lin, Z.; Tie, M.; Chen, J.; Sham, C.W. A one-time-pad-like chaotic image encryption scheme using data steganography. J. Inf. Secur. Appl. 2023, 78, 103592. [Google Scholar] [CrossRef]
- Stoycheva, H.; Mihalev, G.; Sadinov, S.; Angelov, K. Implementation of Chaotic Synchronization and Artificial Neural Networks in Modified OTP Scheme for Image Encryption. J. Imaging 2025, 11, 121. [Google Scholar] [CrossRef]
- Alvarez, G.; Li, S. Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, L. Chaos-Based Image Encryption: Review, Application, and Challenges. Mathematics 2023, 11, 2585. [Google Scholar] [CrossRef]
- Rhouma, R.; Belghith, S. Cryptanalysis of a new image encryption algorithm based on hyper-chaos. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2008, 372, 5973–5978. [Google Scholar] [CrossRef]
- Hanouti, I.E.; Fadili, H.E.; Zenkouar, K. Breaking an image encryption scheme based on Arnold map and Lucas series. Multimed. Tools Appl. 2021, 80, 4975–4997. [Google Scholar] [CrossRef]
- Batool, S.I.; Waseem, H.M. A novel image encryption scheme based on Arnold scrambling and Lucas series. Multimed. Tools Appl. 2019, 78, 27611–27637. [Google Scholar] [CrossRef]
- Hankerson, D.; Menezes, A. Elliptic Curve Cryptography. In Encyclopedia of Cryptography, Security and Privacy; Jajodia, S., Samarati, P., Yung, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–2. [Google Scholar] [CrossRef]
- NIST. Digital Signature Standard (DSS); Technical Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Chen, L.; Moody, D.; Regenscheid, A.; Randall, K.; Robinson, A. Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain Parameters; Technical Report SP 800-186; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Brown, D.R.L. SEC 2: Recommended Elliptic Curve Domain Parameters. Certicom Research. 2010. Available online: https://www.secg.org/sec2-v2.pdf (accessed on 14 July 2025).
- Zia, U.; McCartney, M.; Scotney, B.; Martinez, J.; AbuTair, M.; Memon, J.; Sajjad, A. Survey on image encryption techniques using chaotic maps in spatial, transform and spatiotemporal domains. Int. J. Inf. Secur. 2022, 21, 917–935. [Google Scholar] [CrossRef]
- Caldarola, F.; d’Atri, G.; Zanardo, E. Neural Fairness Blockchain Protocol Using an Elliptic Curves Lottery. Mathematics 2022, 10, 3040. [Google Scholar] [CrossRef]
- Yi, H. Securing e-voting based on blockchain in P2P network. Eurasip J. Wirel. Commun. Netw. 2019, 2019, 137. [Google Scholar] [CrossRef]
- Sasikumar, K.; Nagarajan, S. Comprehensive Review and Analysis of Cryptography Techniques in Cloud Computing. IEEE Access 2024, 12, 52325–52351. [Google Scholar] [CrossRef]
- Lahraoui, Y.; Jebrane, J.; Amal, Y.; Lazaar, S.; Lee, C.C. IECC-SAIN: Innovative ECC-Based Approach for Secure Authentication in IoT Networks. Comput. Model. Eng. Sci. 2025, 144, 615–641. [Google Scholar] [CrossRef]
- Ullah, S.; Zheng, J.; Din, N.; Hussain, M.T.; Ullah, F.; Yousaf, M. Elliptic Curve Cryptography; Applications, challenges, recent advances, and future trends: A comprehensive survey. Comput. Sci. Rev. 2023, 47, 100530. [Google Scholar] [CrossRef]
- Mousavi, S.K.; Ghaffari, A.; Besharat, S.; Afshari, H. Security of internet of things based on cryptographic algorithms: A survey. Wirel. Netw. 2021, 27, 1515–1555. [Google Scholar] [CrossRef]
- Mondal, B.; Kumar, P.; Singh, S. A chaotic permutation and diffusion based image encryption algorithm for secure communications. Multimed. Tools Appl. 2018, 77, 31177–31198. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X. ECC-based image encryption using code computing. In International Conference on Communication, Electronics and Automation Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 859–865. [Google Scholar] [CrossRef]
- Hafsa, A.; Sghaier, A.; Malek, J.; Machhout, M. Image encryption method based on improved ECC and modified AES algorithm. Multimed. Tools Appl. 2021, 80, 19769–19801. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, D. A chaotic based image encryption scheme using elliptic curve cryptography and genetic algorithm. Artif. Intell. Rev. 2024, 57, 87. [Google Scholar] [CrossRef]
- Arnold, V.I.; Avez, A. Ergodic problems in classical mechanics. ZAMM-J. Appl. Math. Mech. Fr Angew. Math. Und Mech. 1968, 50, 506. [Google Scholar]
- Hua, Z.; Jin, F.; Xu, B.; Huang, H. 2D Logistic-Sine-coupling map for image encryption. Signal Process. 2018, 149, 148–161. [Google Scholar] [CrossRef]
- Tora, H.; Gokcay, E.; Turan, M.; Buker, M. A generalized Arnold’s Cat Map transformation for image scrambling. Multimed. Tools Appl. 2022, 81, 31349–31362. [Google Scholar] [CrossRef]
- Parida, P.; Pradhan, C.; Gao, X.Z.; Roy, D.S.; Barik, R.K. Image Encryption and Authentication with Elliptic Curve Cryptography and Multidimensional Chaotic Maps. IEEE Access 2021, 9, 76191–76204. [Google Scholar] [CrossRef]
- Khalid, I.; Shah, T.; Eldin, S.M.; Shah, D.; Asif, M.; Saddique, I. An Integrated Image Encryption Scheme Based on Elliptic Curve. IEEE Access 2023, 11, 5483–5501. [Google Scholar] [CrossRef]
- Murtaza, G.; Hayat, U. Efficient image encryption algorithm based on ECC and dynamic S-box. J. Inf. Secur. Appl. 2025, 90, 104004. [Google Scholar] [CrossRef]
- Ningthoukhongjam, T.R.; Devi Heisnam, S.; Singh Khumanthem, M. Medical Image Encryption Through Chaotic Asymmetric Cryptosystem. IEEE Access 2024, 12, 73879–73888. [Google Scholar] [CrossRef]
- Kumar, P.R.; Goel, S. A secure and efficient encryption system based on adaptive and machine learning for securing data in fog computing. Sci. Rep. 2025, 15, 11654. [Google Scholar] [CrossRef]
- Seyedzadeh, S.M.; Norouzi, B.; Mosavi, M.R.; Mirzakuchaki, S. A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 2015, 81, 511–529. [Google Scholar] [CrossRef]
- Barker, E.B.; Barker, W.C. Recommendation for Key Management: Part 2 – Best Practices for Key Management Organizations. NIST Spec. Publ. 2019, 800-57 Part 2, Rev. 1. [Google Scholar] [CrossRef]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Khan, J.S.; ur Rehman, A.; Ahmad, J.; Habib, Z. A new chaos-based secure image encryption scheme using multiple substitution boxes. In Proceedings of the 2015 Conference on Information Assurance and Cyber Security (CIACS), Rawalpindi, Pakistan, 18 December 2015; pp. 16–21. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Yang, Z.; Hu, J.; Lei, X. A New Plaintext-Related Image Encryption Scheme Based on Chaotic Sequence. IEEE Access 2019, 7, 30344–30360. [Google Scholar] [CrossRef]
- Wu, Y.; Noonan, J.P.; Agaian, S. Shannon Entropy based Randomness Measurement and Test for Image Encryption. arXiv 2011, arXiv:1103.5520. [Google Scholar] [CrossRef]
- Wu, Y.; Noonan, J.P.; Yang, G.; Jin, H. Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imaging 2012, 21, 013014. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Zhang, W.; Wong, K.w.; Yu, H. A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 2011, 181, 1171–1186. [Google Scholar] [CrossRef]
- Wu, Y.; Noonan, J.P.; Agaian, S.S. NPCR and UACI Randomness Tests for Image Encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. (JSAT) 2011, 1, 31–38. [Google Scholar]
- Wang, W.; Si, M.; Pang, Y.; Ran, P.; Wang, H.; Jiang, X.; Liu, Y.; Wu, J.; Wu, W.; Chilamkurti, N.; et al. An encryption algorithm based on combined chaos in body area networks. Comput. Electr. Eng. 2018, 65, 282–291. [Google Scholar] [CrossRef]
- Li, M.; Zhou, K.; Ren, H.; Fan, H. Cryptanalysis of Permutation–Diffusion-Based Lightweight Chaotic Image Encryption Scheme Using CPA. Appl. Sci. 2019, 9, 494. [Google Scholar] [CrossRef]
- Ahmad, M.; Al Solami, E.; Wang, X.Y.; Doja, M.N.; Beg, M.M.S.; Alzaidi, A.A. Cryptanalysis of an Image Encryption Algorithm Based on Combined Chaos for a BAN System, and Improved Scheme Using SHA-512 and Hyperchaos. Symmetry 2018, 10, 266. [Google Scholar] [CrossRef]
- University of Southern California; Signal and Image Processing Institute. USC-SIPI Image Database. 1997. Available online: http://sipi.usc.edu/database/ (accessed on 9 July 2025).
Map Name | Equation | Parameters | Dim. |
---|---|---|---|
Baker’s Map | 2D | ||
Logistic Map | 1D | ||
Tent Map | 1D | ||
Henon Map | 2D | ||
Arnold’s Cat Map | Image size N | 2D | |
Lorenz System | 3D |
Image | Key Pair | NPCR (%) | UACI (%) |
---|---|---|---|
Lena (256 × 256) | 99.62 | 33.41 | |
99.61 | 33.45 | ||
Lena (512 × 512) | 99.60 | 33.42 | |
99.63 | 33.43 |
Test Case | Original Image | Cipher Image | Original ⊕ Cipher | Correlation Coefficient |
---|---|---|---|---|
Peppers | −0.0009 | |||
Cameraman | 0.0007 | |||
Baboon | −0.0030 |
Image | Horizontal | Vertical | Diagonal d1 |
---|---|---|---|
Lena | 0.00094 | −0.00115 | −0.00022 |
Peppers | 0.0035 | −0.00059 | −0.004 |
Baboon | −0.0012 | −0.00073 | −0.0021 |
Cameraman | −0.0026 | −0.0008 | −0.0055 |
Image | Original | Cipher |
---|---|---|
Lena | 0.9372 | 0.0272 |
Peppers | 0.5542 | 0.0264 |
Baboon | 0.7571 | 0.0235 |
Cameraman | 0.9789 | 0.0242 |
Edge Noisy Image | 1.9844 | 0.0271 |
Cipher Image | Size | Chi-Square () | p-Value | Assessment |
---|---|---|---|---|
Lena | 256 × 256 | 261.9375 | 0.3692 | Pass |
512 × 512 | 284.2070 | 0.1009 | Pass | |
1024 × 1024 | 259.4951 | 0.4100 | Pass | |
Peper | 256 × 256 | 249.7734 | 0.5806 | Pass |
512 × 512 | 272.9180 | 0.2104 | Pass | |
1024 × 1024 | 234.9663 | 0.8110 | Pass | |
Baboon | 256 × 256 | 264.7734 | 0.3239 | Pass |
512 × 512 | 226.2910 | 0.9019 | Pass | |
1024 × 1024 | 215.3920 | 0.9659 | Pass | |
Cameraman | 256 × 256 | 263.8750 | 0.3380 | Pass |
512 × 512 | 244.5117 | 0.6705 | Pass | |
1024 × 1024 | 283.0888 | 0.1093 | Pass | |
Edge Noisy Image | 256 × 256 | 222.7422 | 0.9284 | Pass |
512 × 512 | 283.9414 | 0.1029 | Pass | |
1024 × 1024 | 259.2016 | 0.4150 | Pass |
Cipher Image | Global Entropy | Local Entropy | Theoretical Block Entropy | ||
---|---|---|---|---|---|
Lena | 7.99986 | 7.19389 | Pass | Pass | Pass |
Peppers | 7.99929 | 7.17146 | Pass | Pass | Pass |
Baboon | 7.99943 | 7.17335 | Pass | Pass | Pass |
Cameraman | 7.99937 | 7.18702 | Pass | Pass | Pass |
Tested Image Size 512 × 512 | Theoretical UACI Critical Values | |||
---|---|---|---|---|
Cipher Image | UACI Value (s) | UACI Test Results | ||
0.05-Level | 0.01-Level | 0.001-Level | ||
Lena | 33.4756% | Pass | Pass | Pass |
Baboon | 33.4561% | Pass | Pass | Pass |
Peppers | 33.4885% | Pass | Pass | Pass |
Cameraman | 33.4507% | Pass | Pass | Pass |
Edge Noisy Image | 33.4009% | Pass | Pass | Pass |
Tested Image Size 512 × 512 | Theoretical NPCR Critical Values | |||
---|---|---|---|---|
Cipher Image | NPCR Value (s) | NPCR Test Results | ||
0.05-Leve | 0.01-Level | 0.001-Level | ||
Lena | 99.6216% | Pass | Pass | Pass |
Baboon | 99.6201% | Pass | Pass | Pass |
Peppers | 99.6193% | Pass | Pass | Pass |
Cameraman | 99.6214% | Pass | Pass | Pass |
Edge Noisy Image | 99.6207% | Pass | Pass | Pass |
Image | Contrast | Energy | Homogeneity | |||
---|---|---|---|---|---|---|
PI | CI | PI | CI | PI | CI | |
Lena | 98.58 | 10,895.98 | 0.00036 | 1.71 × 10−5 | 0.31943 | 0.03631 |
Peppers | 127.77 | 10,871.49 | 0.00026 | 1.72 × 10−5 | 0.27398 | 0.03669 |
Cameraman | 103.27 | 10,885.65 | 0.00188 | 1.72 × 10−5 | 0.46849 | 0.03640 |
Baboon | 668.67 | 10,900.02 | 0.00012 | 1.73 × 10−5 | 0.15748 | 0.03616 |
Image | = 0.005 | = 0.01 | = 0.05 | |||
---|---|---|---|---|---|---|
Obs. | Exp. | Obs. | Exp. | Obs. | Exp. | |
Lena | 32.30 | 32.24 | 22.36 | 22.24 | 19.46 | 19.23 |
Peppers | 32.02 | 31.89 | 22.04 | 21.89 | 19.14 | 18.88 |
Baboon | 32.49 | 32.53 | 22.64 | 22.53 | 19.72 | 19.52 |
Cameraman | 31.09 | 31.41 | 21.50 | 21.41 | 18.58 | 18.40 |
Boat.512 | 32.63 | 32.31 | 22.37 | 22.31 | 19.46 | 19.30 |
Image | = 1/16 | = 1/4 | = 1/2 | |||
---|---|---|---|---|---|---|
Obs. | Exp. | Obs. | Exp. | Obs. | Exp. | |
Lena | 21.27 | 21.27 | 15.25 | 15.25 | 12.23 | 12.24 |
Peppers | 21.11 | 20.92 | 14.99 | 14.90 | 11.88 | 11.89 |
Baboon | 21.52 | 21.56 | 15.53 | 15.54 | 12.54 | 12.53 |
Cameraman | 20.43 | 20.45 | 14.43 | 14.43 | 11.41 | 11.41 |
Boat.512 | 21.67 | 21.34 | 15.57 | 15.32 | 12.28 | 12.31 |
Type of Test | p-Value | Conclusion |
---|---|---|
Frequency | 0.275709 | Pass |
BlockFrequency | 0.289667 | Pass |
Cumulative Sums | 0.213309 | Pass |
Cumulative Sums | 0.534146 | Pass |
Runs | 0.137282 | Pass |
Longest Run | 0.816537 | Pass |
Rank | 0.474986 | Pass |
FFT | 0.171867 | Pass |
Non-Overlapping Template | 0.249284 | Pass |
Overlapping Template | 0.883171 | Pass |
Universal | 0.739918 | Pass |
Approximate Entropy | 0.236810 | Pass |
Random Excursions | 0.275709 | Pass |
Random Excursions Variant | 0.437274 | Pass |
Serial | 0.739918 | Pass |
Linear Complexity | 0.924076 | Pass |
Image Size (px) | Encryption Time (s) | Decryption Time (s) |
---|---|---|
64 × 64 | 0.012157 | 0.012158 |
128 × 128 | 0.020061 | 0.018328 |
256 × 256 | 0.068099 | 0.074834 |
512 × 512 | 0.213090 | 0.229283 |
Evaluation Metric | Ref. [25] | Ref. [28] | Ref. [32] | Ref. [33] | Ref. [35] | Proposed |
---|---|---|---|---|---|---|
Correlation () | 0.0031 | −0.0075 | −0.0022 | 0.0009 | −0.0007 | 0.00016 |
Correlation () | 0.0063 | −0.0070 | 0.0047 | 0.0007 | −0.0007 | −0.0008 |
Correlation () | 0.003 | 0.0041 | 0.0013 | 0.0007 | −0.001 | −0.0029 |
Global Entropy | 7.998075 | 7.9987 | 7.9993 | 7.9991 | 7.9997 | 7.9995 |
NPCR (%) | 99.6355 | 99.574 | 99.62 | 99.69 | 99.69 | 99.62 |
UACI (%) | 39.80515 | 33.39 | 33.336 | 33.4 | 33.52 | 33.4543 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahraoui, Y.; Lazaar, S.; Amal, Y.; Nitaj, A. A Novel ECC-Based Method for Secure Image Encryption. Algorithms 2025, 18, 514. https://doi.org/10.3390/a18080514
Lahraoui Y, Lazaar S, Amal Y, Nitaj A. A Novel ECC-Based Method for Secure Image Encryption. Algorithms. 2025; 18(8):514. https://doi.org/10.3390/a18080514
Chicago/Turabian StyleLahraoui, Younes, Saiida Lazaar, Youssef Amal, and Abderrahmane Nitaj. 2025. "A Novel ECC-Based Method for Secure Image Encryption" Algorithms 18, no. 8: 514. https://doi.org/10.3390/a18080514
APA StyleLahraoui, Y., Lazaar, S., Amal, Y., & Nitaj, A. (2025). A Novel ECC-Based Method for Secure Image Encryption. Algorithms, 18(8), 514. https://doi.org/10.3390/a18080514