Document Image Shadow Removal Based on Illumination Correction Method
Abstract
1. Introduction
2. Related Works
2.1. Document Shadow Removal Dataset
2.1.1. The Real Datasets
2.1.2. The Synthetic Datasets
2.2. Document Shadow Removal Methods
3. The Dark Illumination Correction Net
3.1. Overall DICNet Structure
3.2. The Simplified Shadow-Corrected Attention Block
3.3. The Loss Function
4. Experiments
4.1. Evaluation Metrics
4.2. Experimental Settings and Baseline Methods
4.3. Visual Comparison
4.4. Quantitative Analysis
4.5. Ablation Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Liang, L.; Ding, K.; Guo, F.; Jin, L. Appearance enhancement for camera-captured document images in the wild. IEEE Trans. Artif. Intell. 2023, 5, 2319–2330. [Google Scholar] [CrossRef]
- Imahayashi, S.; Mukaida, M.; Takeda, S.; Suetake, N. Shadow removal from document image based on background estimation employing selective median filter and black-top-hat transform. Opt. Rev. 2023, 30, 336–340. [Google Scholar] [CrossRef]
- Bogdan, K.O.; Megeto, G.A.; Leal, R.; Souza, G.; Valente, A.C.; Kirsten, L.N. Ddoce: Deep document enhancement with multi-scale feature aggregation and pixel-wise adjustments. In Proceedings of the International Conference on Document Analysis and Recognition, Lausanne, Switzerland, 5–10 September 2021; Springer: Cham, Switzerland, 2021; pp. 229–244. [Google Scholar]
- Georgiadis, K.; Yucel, M.K.; Skartados, E.; Dimaridou, V.; Drosou, A.; Saa-Garriga, A.; Manganelli, B. Lp-ioanet: Efficient high resolution document shadow removal. In Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodos, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Amin, B.; Riaz, M.M.; Ghafoor, A. Automatic shadow detection and removal using image matting. Signal Process. 2020, 170, 107415. [Google Scholar] [CrossRef]
- Michalak, H.; Okarma, K. Fast binarization of unevenly illuminated document images based on background estimation for optical character recognition purposes. J. Univers. Comput. Sci. 2019, 25, 627–646. [Google Scholar]
- Das, S.; Sial, H.A.; Ma, K.; Baldrich, R.; Vanrell, M.; Samaras, D. Intrinsic decomposition of document images in-the-wild. arXiv 2020, arXiv:2011.14447. [Google Scholar]
- Ravindran, A.; Arudselvam, U.; Thayasivam, U. Shadow removal for documents with reflective textured surface. In Proceedings of the IEEE 2022 Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 27–29 July 2022; pp. 1–6. [Google Scholar]
- Oliveira, D.M.; Lins, R.D. A new method for shading removal and binarization of documents acquired with portable digital cameras. In Proceedings of the Third International Workshop on Camera-Based Document Analysis and Recognition, Barcelona, Spain, 25 July 2009; pp. 3–10. [Google Scholar]
- Wang, B.; Feng, S.; Chen, C.P. Strong shadow removal of text document images based on background estimation and shading scale. In Proceedings of the IEEE 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems, Guangzhou, China, 13–15 November 2020; pp. 738–742. [Google Scholar]
- Gong, H.; Cosker, D. Interactive shadow removal and ground truth for variable scene categories. In Proceedings of the BMVC 2014—Proceedings of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014; pp. 1–11. [Google Scholar]
- Inoue, N.; Yamasaki, T. Learning from synthetic shadows for shadow detection and removal. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 4187–4197. [Google Scholar] [CrossRef]
- Bako, S.; Darabi, S.; Shechtman, E.; Wang, J.; Sunkavalli, K.; Sen, P. Removing shadows from images of documents. In Proceedings of the Asian Conference on Computer Vision, Taipei, China, 20–24 November 2016; pp. 173–183. [Google Scholar]
- Jung, S.; Hasan, M.A.; Kim, C. Water-filling: An efficient algorithm for digitized document shadow removal. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Springer: Cham, Switzerland, 2018; pp. 398–414. [Google Scholar]
- Kligler, N.; Katz, S.; Tal, A. Document enhancement using visibility detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2374–2382. [Google Scholar]
- Wang, B.; Chen, C.P. Local water-filling algorithm for shadow detection and removal of document images. Sensors 2020, 20, 6929. [Google Scholar] [CrossRef]
- Shah, V.; Gandhi, V. An iterative approach for shadow removal in document images. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; pp. 1892–1896. [Google Scholar]
- Matsuo, Y.; Akimoto, N.; Aoki, Y. Document shadow removal with foreground detection learning from fully synthetic images. In Proceedings of the 2022 IEEE International Conference on Image Processing, Bordeaux, France, 16–19 October 2022; pp. 1656–1660. [Google Scholar]
- Liu, W.; Wang, B.; Wang, Z.; Chen, C.L. DocShaDiffusion: Diffusion Modal in Latent Space for Document Image Shadow Removal. arXiv 2025, arXiv:2507.01422. [Google Scholar]
- Lin, Y.H.; Chen, W.C.; Chuang, Y.Y. Bedsr-net: A deep shadow removal network from a single document image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12905–12914. [Google Scholar]
- Chen, X.; Cun, X.; Pun, C.M.; Wang, S. Shadocnet: Learning spatial-aware tokens in transformer for document shadow removal. In Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodos, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Zhang, L.; He, Y.; Zhang, Q.; Liu, Z.; Zhang, X.; Xiao, C. Document image shadow removal guided by color-aware background. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 1818–1827. [Google Scholar]
- Luo, Z.; Gustafsson, F.K.; Zhao, Z.; Sjölund, J.; Schön, T.B. Refusion: Enabling large-size realistic image restoration with latent-space diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Rhodes, Greece, 4–10 June 2023; pp. 1680–1691. [Google Scholar]
- Chen, L.; Chu, X.; Zhang, X.; Sun, J. Simple baselines for image restoration. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 17–33. [Google Scholar]
- Jin, Y.; Sharma, A.; Tan, R.T. Dc-shadownet: Single-image hard and soft shadow removal using unsupervised domain-classifier guided network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 5027–5036. [Google Scholar]
- Guo, L.; Wang, C.; Yang, W.; Huang, S.; Wang, Y.; Pfister, H.; Wen, B. Shadowdiffusion: When degradation prior meets diffusion model for shadow removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 14049–14058. [Google Scholar]
- Hu, X.; Jiang, Y.; Fu, C.W.; Heng, P.A. Mask-shadowgan: Learning to remove shadows from unpaired data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2472–2481. [Google Scholar]
- Liu, W.; Wang, B.; Zheng, J.; Wang, W. Shadow removal of text document images using background estimation and adaptive text enhancement. In Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodos, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Wang, Z.; Wang, B.; Zheng, J.; Chen, C.P. Joint water-filling algorithm with adaptive chroma adjustment for shadow removal from text document images. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Prague, Czech Republic, 9–12 October 2022; pp. 2882–2887. [Google Scholar]
- Wang, J.R.; Chuang, Y.Y. Shadow removal of text document images by estimating local and global background colors. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Virtual, 4–9 May 2020; pp. 1534–1538. [Google Scholar]
- Wang, B.; Chen, C.P. An effective background estimation method for shadows removal of document images. In Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, China, 22–25 September2019; pp. 3611–3615. [Google Scholar]
Dataset | Number of Images | Shadow Mask Is Available | Real/Synthetic |
---|---|---|---|
Adobe [13] | 81 | no | real |
Jung [14] | 87 | no | real |
Kligler [15] | 381 | no | real |
OSR [16] | 237 | yes | real |
HS [17] | 100 | no | real |
FSDARD [18] | 14,200 | yes | synthetic |
SDCSRD [19] | 17,624 | yes | synthetic |
Methods | Adobe | HS | Jung | Kligler | OSR | Average | Standard Deviation |
---|---|---|---|---|---|---|---|
ISR [17] | 0.6511 | 0.8707 | 0.8714 | 0.7544 | 0.8259 | 0.7947 | 0.0835 |
3D-PC [15] | 0.7931 | 0.8970 | 0.8527 | 0.7969 | 0.8491 | 0.8378 | 0.0388 |
WF [14] | 0.7748 | 0.9370 | 0.9173 | 0.8341 | 0.9141 | 0.8755 | 0.0614 |
BE [31] | 0.7182 | 0.8608 | 0.6576 | 0.7955 | 0.8234 | 0.7711 | 0.0736 |
LGBC [30] | 0.8581 | 0.7093 | 0.8135 | 0.8841 | 0.8256 | 0.8181 | 0.0598 |
JWF [29] | 0.9169 | 0.9072 | 0.8747 | 0.8023 | 0.9004 | 0.8803 | 0.0414 |
BEATE [28] | 0.9513 | 0.9469 | 0.9162 | 0.9268 | 0.9372 | 0.9357 | 0.0129 |
MS-GAN [27] | 0.8506 | 0.9225 | 0.8816 | 0.8160 | 0.9117 | 0.8765 | 0.0393 |
DCShadow-Net [25] | 0.9183 | 0.9351 | 0.8778 | 0.8267 | 0.8996 | 0.8915 | 0.0376 |
CBENet [22] | 0.9249 | 0.9566 | 0.9466 | 0.9216 | 0.9506 | 0.9401 | 0.0141 |
DICNet | 0.9978 | 0.9949 | 0.9894 | 0.9956 | 0.9942 | 0.9944 | 0.0028 |
Methods | Adobe | HS | Jung | Kligler | OSR | Average | Standard Deviation |
---|---|---|---|---|---|---|---|
ISR [17] | 132.8236 | 69.9663 | 51.4320 | 94.9936 | 74.7759 | 84.7983 | 27.4869 |
3D-PC [15] | 45.1189 | 22.9948 | 27.1410 | 22.1827 | 32.5690 | 30.0013 | 8.4088 |
WF [14] | 79.1152 | 20.6632 | 18.4178 | 38.0803 | 31.9471 | 37.6447 | 21.9568 |
BE [31] | 55.0093 | 41.5587 | 96.7136 | 40.5711 | 40.9424 | 54.9590 | 21.5708 |
LGBC [30] | 10.3736 | 27.5048 | 20.8406 | 9.7618 | 23.3185 | 18.3599 | 7.1004 |
JWF [29] | 23.7720 | 38.1403 | 53.7947 | 48.7566 | 28.1078 | 38.5143 | 11.5253 |
BEATE [28] | 6.5083 | 9.0040 | 15.2094 | 8.0355 | 15.6698 | 10.8854 | 3.8055 |
MS-GAN [27] | 15.6217 | 14.6334 | 31.1069 | 27.1857 | 23.9341 | 22.4964 | 6.4387 |
DCShadow-Net [25] | 10.4625 | 15.7446 | 33.1704 | 29.7510 | 23.3857 | 22.5028 | 8.4588 |
CBENet [22] | 24.7669 | 16.6032 | 22.0069 | 10.1808 | 19.6035 | 18.6323 | 5.0102 |
DICNet | 5.8785 | 7.4634 | 10.1487 | 7.2563 | 9.3031 | 8.0100 | 1.5268 |
Methods | Adobe | HS | Jung | Kligler | OSR | Average | Standard Deviation |
---|---|---|---|---|---|---|---|
ISR [17] | 5.7007 | 12.2114 | 14.1089 | 8.6179 | 10.7413 | 10.2760 | 2.9098 |
3D-PC [15] | 15.0667 | 20.9485 | 19.5096 | 21.3490 | 18.1030 | 18.9954 | 2.2737 |
WF [14] | 10.2377 | 22.3817 | 22.8450 | 16.6868 | 18.3221 | 18.0947 | 4.5762 |
BE [31] | 13.6516 | 16.6430 | 9.0183 | 16.3216 | 16.5030 | 14.4275 | 2.9211 |
LGBC [30] | 28.3047 | 19.8316 | 21.8917 | 28.6566 | 20.9347 | 23.9239 | 3.7789 |
JWF [29] | 21.3437 | 16.8070 | 13.6268 | 14.5352 | 19.7622 | 17.2150 | 2.9583 |
BEATE [28] | 32.2547 | 29.1951 | 24.6339 | 30.3406 | 24.5006 | 28.1850 | 3.1117 |
MS-GAN [27] | 24.7240 | 24.9514 | 18.5062 | 19.9905 | 20.9466 | 21.8237 | 2.5819 |
DCShadow-Net [25] | 27.9549 | 24.3020 | 18.2546 | 19.1632 | 23.3857 | 22.6121 | 3.5463 |
CBENet [22] | 22.5846 | 24.5800 | 21.4163 | 28.2218 | 22.8219 | 23.9249 | 2.3748 |
DICNet | 33.0658 | 30.7542 | 28.0092 | 31.1705 | 28.8094 | 30.3618 | 1.7924 |
Methods | Adobe | HS | ||||
---|---|---|---|---|---|---|
PSNR | SSIM | RMSE | PSNR | SSIM | RMSE | |
DICNet w/o SSCA | 28.2369 | 0.9821 | 10.5231 | 29.4675 | 0.9413 | 9.6438 |
DICNet w/o mask | 30.6627 | 0.9913 | 7.5681 | 30.6781 | 0.9474 | 7.4896 |
DICNet | 33.0658 | 0.9978 | 5.8785 | 30.7542 | 0.9959 | 7.4634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Liu, W.; Chen, S.; Qiu, J.; Mei, X.; Wang, B. Document Image Shadow Removal Based on Illumination Correction Method. Algorithms 2025, 18, 468. https://doi.org/10.3390/a18080468
Gao D, Liu W, Chen S, Qiu J, Mei X, Wang B. Document Image Shadow Removal Based on Illumination Correction Method. Algorithms. 2025; 18(8):468. https://doi.org/10.3390/a18080468
Chicago/Turabian StyleGao, Depeng, Wenjie Liu, Shuxi Chen, Jianlin Qiu, Xiangxiang Mei, and Bingshu Wang. 2025. "Document Image Shadow Removal Based on Illumination Correction Method" Algorithms 18, no. 8: 468. https://doi.org/10.3390/a18080468
APA StyleGao, D., Liu, W., Chen, S., Qiu, J., Mei, X., & Wang, B. (2025). Document Image Shadow Removal Based on Illumination Correction Method. Algorithms, 18(8), 468. https://doi.org/10.3390/a18080468