Machine Learning Algorithms for Biomedical Image Analysis and Their Applications
Acknowledgments
Conflicts of Interest
References
- Rundo, L.; Militello, C. Image biomarkers and explainable AI: Handcrafted features versus deep learned features. Eur. Radiol. Exp. 2024, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, N.; Matos, C.; Koh, D.M. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging 2020, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- Dhesi, S.S.; Adusumilli, P.; Ravikumar, N.; Waduud, M.A.; Frood, R.; Frangi, A.F.; McDermott, G.; Rudd, J.H.; Huang, Y.; Boyle, J.R.; et al. Development and External Validation of [18F] FDG PET-CT-Derived Radiomic Models for Prediction of Abdominal Aortic Aneurysm Growth Rate. Algorithms 2025, 18, 86. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kedarnath, S.; Ioannis K., A.; Pateel, G. Improving Vertebral Fracture Detection in C-Spine CT Images Using Bayesian Probability-Based Ensemble Learning. Algorithms 2025, 18, 181. [Google Scholar] [CrossRef]
- Moqurrab, S.A.; Rai, H.M.; Yoo, J. HRIDM: Hybrid Residual/Inception-Based Deeper Model for Arrhythmia Detection from Large Sets of 12-Lead ECG Recordings. Algorithms 2024, 17, 364. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Rawson, M.; Balan, R.; Herskovits, E.H.; Melhem, E.R.; Chang, L.; Wang, Z.; Ernst, T. Motion correction for brain mri using deep learning and a novel hybrid loss function. Algorithms 2024, 17, 215. [Google Scholar] [CrossRef]
- Matsuzaka, Y.; Yashiro, R. The Diagnostic Classification of the Pathological Image Using Computer Vision. Algorithms 2025, 18, 96. [Google Scholar] [CrossRef]
- Prinzi, F.; Militello, C.; Zarcaro, C.; Bartolotta, T.V.; Gaglio, S.; Vitabile, S. Rad4XCNN: A new agnostic method for post-hoc global explanation of CNN-derived features by means of Radiomics. Comput. Methods Programs Biomed. 2025, 260, 108576. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prinzi, F.; Machado, I.P.; Militello, C. Machine Learning Algorithms for Biomedical Image Analysis and Their Applications. Algorithms 2025, 18, 337. https://doi.org/10.3390/a18060337
Prinzi F, Machado IP, Militello C. Machine Learning Algorithms for Biomedical Image Analysis and Their Applications. Algorithms. 2025; 18(6):337. https://doi.org/10.3390/a18060337
Chicago/Turabian StylePrinzi, Francesco, Ines Prata Machado, and Carmelo Militello. 2025. "Machine Learning Algorithms for Biomedical Image Analysis and Their Applications" Algorithms 18, no. 6: 337. https://doi.org/10.3390/a18060337
APA StylePrinzi, F., Machado, I. P., & Militello, C. (2025). Machine Learning Algorithms for Biomedical Image Analysis and Their Applications. Algorithms, 18(6), 337. https://doi.org/10.3390/a18060337