Stochastic Disruption of Synchronization Patterns in Coupled Non-Identical Neurons
Abstract
1. Introduction
2. Deterministic Model
2.1. Dynamics of Isolated Neuron
2.2. Dynamics of Coupled Neurons
3. Stochastic Model
3.1. Stochastic Deformations in the Tristability Case
3.2. Confidence Domain Method
3.3. Stochastic Deformations in the Bistability Case
3.4. Stochastic Deformations in the Monostability Case
4. Transients and Intermittent Synchronization
4.1. Basins of Short and Long Transients
4.2. Intermittent Synchronization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pikovsky, A.S.; Rosenblum, M.G.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Boccaletti, S.; Pisarchik, A.N.; del Genio, C.I.; Amann, A. Synchronization: From Coupled Systems to Complex Networks; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Ghosh, D.; Frasca, M.; Rizzo, A.; Majhi, S.; Rakshit, S.; Alfaro-Bittner, K.; Boccaletti, S. The synchronized dynamics of time-varying networks. Phys. Rep. 2022, 949, 1–63. [Google Scholar] [CrossRef]
- Wu, X.; Wu, X.; Wang, C.Y.; Mao, B.; Lu, J.; Lü, J.; Zhang, Y.C.; Lü, L. Synchronization in multiplex networks. Phys. Rep. 2024, 1060, 1–54. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron 2006, 52, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Jiruska, P.; de Curtis, M.; Jefferys, J.G.; Schevon, C.A.; Schiff, S.J.; Schindler, K. Synchronization and desynchronization in epilepsy: Controversies and hypotheses. J. Physiol. 2013, 591, 787–797. [Google Scholar] [CrossRef]
- Popovych, O.V.; Tass, P.A. Control of abnormal synchronization in neurological disorders. Front. Neurol. 2014, 5, 268. [Google Scholar] [CrossRef] [PubMed]
- Destexhe, A.; Rudolph-Lilith, M. Neuronal Noise; Springer Series in Computational Neuroscience; Springer: New York, NY, USA, 2012; Volume 8. [Google Scholar]
- Kelly, F.; Yudovina, E. Stochastic Networks; Cambridge University Press: Cambridge, UK, 2014; Volume 2. [Google Scholar]
- Kulkarni, A.; Ranft, J.; Hakim, V. Synchronization, stochasticity, and phase waves in neuronal networks with spatially-structured connectivity. Front. Comput. Neurosci. 2020, 14, 569644. [Google Scholar] [CrossRef]
- Olin-Ammentorp, W.; Beckmann, K.; Schuman, C.D.; Plank, J.S.; Cady, N.C. Stochasticity and robustness in spiking neural networks. Neurocomputing 2021, 419, 23–36. [Google Scholar] [CrossRef]
- Park, C.; Rubchinsky, L.L. Intermittent synchronization in a network of bursting neurons. Chaos 2011, 21, 033125. [Google Scholar] [CrossRef]
- Berger, A.; Qian, H.; Wang, S.; Yi, Y. Intermittent synchronization in finite-state random networks under Markov perturbations. Commun. Math. Phys. 2021, 384, 1945–1970. [Google Scholar] [CrossRef]
- Simiu, E. Chaotic Transitions in Deterministic and Stochastic Dynamical Systems: Applications of Melnikov Processes in Engineering, Physics, and Neuroscience; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Kurrer, C.; Schulten, K. Noise-induced synchronous neural oscillations. Phys. Rev. E 2002, 51, 6213–6218. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Z.; Li, W. Sampled-data intermittent synchronization of complex-valued complex network with actuator saturations. Nonlin. Dyn. 2022, 107, 1023–1047. [Google Scholar] [CrossRef]
- Kraut, S.; Feudel, U.; Grebogi, C. Preference of attractors in noisy multistable systems. Phys. Rev. E 1999, 59, 5253–5260. [Google Scholar] [CrossRef] [PubMed]
- Kraut, S.; Feudel, U. Multistability, noise, and attractor hopping: The crucial role of chaotic saddles. Phys. Rev. E 2002, 66, 015207. [Google Scholar] [CrossRef]
- Koronovskii, A.A.; Hramov, A.E.; Grubov, V.V.; Moskalenko, O.I.; Sitnikova, E.; Pavlov, A.N. Coexistence of intermittencies in the neuronal network of the epileptic brain. Phys. Rev. E 2016, 93, 032220. [Google Scholar] [CrossRef] [PubMed]
- Pisarchik, A.N.; Hramov, A.E. Multistability in Physical and Living Systems: Characterization and Applications; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Rulkov, N.F. Regularization of synchronized chaotic bursts. Phys. Rev. Lett. 2001, 86, 183–186. [Google Scholar] [CrossRef]
- Wang, C.; Cao, H. Stability and chaos of Rulkov map-based neuron network with electrical synapse. Commun. Nonlin. Sci. Numer. Simul. 2015, 20, 536–545. [Google Scholar] [CrossRef]
- Dijkstra, K.; Kuznetsov, Y.A.; van Putten, M.J.A.M.; van Gils, S.A. A rate-reduced neuron model for complex spiking behavior. J. Math. Neurosci. 2017, 11, 13. [Google Scholar] [CrossRef]
- Ge, P.; Cao, H. Chaos in the Rulkov neuron model based on Marotto’s theorem. Internat. J. Bifurc. Chaos 2021, 31, 2150233. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Liang, S. New phenomena in Rulkov map based on Poincaré cross section. Nonlin. Dyn. 2023, 111, 19447–19458. [Google Scholar] [CrossRef]
- López, J.; Coccolo, M.; Capeáns, R.; Sanjuán, M.A.F. Controlling the bursting size in the two-dimensional Rulkov model. Commun. Nonlin. Sci. Numer. Simul. 2023, 120, 107184. [Google Scholar] [CrossRef]
- Li, G.; Duan, J.; Yue, Z.; Li, Z.; Li, D. Dynamical analysis of the Rulkov model with quasiperiodic forcing. Chaos Solitons Fractals 2024, 189, 115605. [Google Scholar] [CrossRef]
- Marghoti, G.; Ferrari, F.A.S.; Viana, R.L.; Lopes, S.R.; Prado, T.d.L. Coupling dependence on chaos synchronization process in a network of Rulkov neurons. Intern. J. Bifurc. Chaos 2023, 33, 2350132. [Google Scholar] [CrossRef]
- Ge, P.; Cheng, L.; Cao, H. Complete synchronization of three-layer Rulkov neuron network coupled by electrical and chemical synapses. Chaos 2024, 34, 043127. [Google Scholar] [CrossRef]
- Le, B.B. Asymmetric coupling of nonchaotic Rulkov neurons: Fractal attractors, quasimultistability, and final state sensitivity. Phys. Rev. E 2025, 111, 034201. [Google Scholar] [CrossRef] [PubMed]
- Bashkirtseva, I.; Ryashko, L. Stochastic sensitivity analysis of noise-induced phenomena in discrete systems. In Recent Trends in Chaotic, Nonlinear and Complex Dynamics; World Scientific Series on Nonlinear Science Series B; World Scientific: Singapore, 2021; Chapter 8; pp. 173–192. [Google Scholar]
- Garain, K.; Sarathi Mandal, P. Stochastic sensitivity analysis and early warning signals of critical transitions in a tri-stable prey-predator system with noise. Chaos 2022, 32, 033115. [Google Scholar] [CrossRef]
- Guo, K.; Jiang, J. Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map. Phys. Lett. A 2014, 378, 2518–2523. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, S.; Zhang, T. Stochastic sensitivity analysis for a competitive turbidostat model with inhibitory nutrients. Int. J. Bifurcat. Chaos 2016, 26, 1650173. [Google Scholar] [CrossRef]
- Sun, Y.; Hong, L.; Jiang, J. Stochastic sensitivity analysis of nonautonomous nonlinear systems subjected to Poisson white noise. Chaos Solitons Fractals 2017, 104, 508–515. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, S.; Zhang, T. Confidence domain in the stochastic competition chemostat model with feedback control. Appl. Math. J. Chinese Univ. 2018, 33, 379–389. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, T.; Zhou, Y. Stochastic sensitivity and dynamical complexity of newsvendor models subject to trade credit. Math. Comput. Simul. 2021, 181, 471–486. [Google Scholar] [CrossRef]
- Bashkirtseva, I.A.; Ryashko, L.B.; Pisarchik, A.N. Dragon intermittency at the transition to synchronization in coupled Rulkov neurons. Mathematics 2025, 13, 415. [Google Scholar] [CrossRef]
- Stone, E.; Holmes, P. Noise-induced intermittency in a model of turbulent boundary layer. Phys. D 1989, 37, 20–32. [Google Scholar] [CrossRef]
- Manneville, P.; Pomeau, Y. Intermittency and the Lorenz model. Phys. Lett. 1979, 75A, 1–2. [Google Scholar] [CrossRef]
- Platt, N.; Hammel, S.M.; Heagy, J.F. Effects of additive noise on on-off intermittency. Phys. Rev. Lett. 1994, 72, 3498. [Google Scholar] [CrossRef] [PubMed]
- Heagy, J.F.; Platt, N.; S M Hammel, S.M. Characterization of on-off intermittency. Phys. Rev. E 1994, 48, 1140. [Google Scholar] [CrossRef]
- Fujisaka, H.; Ouchi, K.; Ohara, H. On-off convection: Noise-induced intermittency near the convection threshold. Phys. Rev. E 2001, 64, 036201. [Google Scholar] [CrossRef]
- Moskalenko, O.; Koronovskii, A.A.; Zhuravlev, M.O.; Hramov, A.E. Characteristics of noise-induced intermittency. Chaos Solitons Fractals 2018, 117, 269–275. [Google Scholar] [CrossRef]
- Simonotto, E.; Riani, M.; Seife, C.; Roberts, M.; Twitty, J.; Moss, F. Visual perception of stochastic resonance. Phys. Rev. Lett. 1997, 78, 1186–1189. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Hramov, A.E. Coherence resonance in neural networks: Theory and experiments. Phys. Rep. 2023, 1000, 1–57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashkirtseva, I.A.; Ryashko, L.B.; Tsvetkov, I.N.; Pisarchik, A.N. Stochastic Disruption of Synchronization Patterns in Coupled Non-Identical Neurons. Algorithms 2025, 18, 330. https://doi.org/10.3390/a18060330
Bashkirtseva IA, Ryashko LB, Tsvetkov IN, Pisarchik AN. Stochastic Disruption of Synchronization Patterns in Coupled Non-Identical Neurons. Algorithms. 2025; 18(6):330. https://doi.org/10.3390/a18060330
Chicago/Turabian StyleBashkirtseva, Irina A., Lev B. Ryashko, Ivan N. Tsvetkov, and Alexander N. Pisarchik. 2025. "Stochastic Disruption of Synchronization Patterns in Coupled Non-Identical Neurons" Algorithms 18, no. 6: 330. https://doi.org/10.3390/a18060330
APA StyleBashkirtseva, I. A., Ryashko, L. B., Tsvetkov, I. N., & Pisarchik, A. N. (2025). Stochastic Disruption of Synchronization Patterns in Coupled Non-Identical Neurons. Algorithms, 18(6), 330. https://doi.org/10.3390/a18060330