Combination of Conditioning Factors for Generation of Landslide Susceptibility Maps by Extreme Gradient Boosting in Cuenca, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Landslides Inventory
2.2.2. Conditioning Factors
2.3. Methods
2.3.1. Analysis of Conditioning Factors
Dependent DEM Factors
Not DEM Dependent Factors
2.3.2. Sampling Methods Implementation
2.3.3. Training and Testing Data Selection
2.3.4. Machine Learning Model Implementation
Extreme Gradient Boosting (XGBoost)
2.3.5. XGBoost Hyperparameter Tuning
2.3.6. Results Validation
2.3.7. Landslide Susceptibility Mapping (LSM)
2.3.8. Statistical Comparison Between LSM with Wilcoxon Test
3. Results
3.1. Hyperparameter Tuning
3.2. Machine Learning Models Validation
3.3. Landslide Susceptibility Analysis
3.4. Models Statistical Significance Analysis
4. Discussion
4.1. Results Interpretation
4.2. Comparison with Previous Studies
4.3. Additional Study Implications
4.4. Study Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geertsema, M.; Alcántara-Ayala, I. Mountain Landslides: An Overview of Common Types and Future Impacts. In Montology Palimpsest: A Primer of Mountain Geographies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 187–209. [Google Scholar] [CrossRef]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- UNDRR. Global Assessment Report on Disaster Risk Reduction. Geneva, Switzerland. United Nations Office for Disaster Risk Reduction (UNDRR). 2019. Available online: https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2019 (accessed on 23 August 2024).
- Brabb, E. Innovative Approaches to Landslide Hazard and Risk Mapping. In Proceedings of the 4th International Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984; pp. 307–323. [Google Scholar]
- Kavzoglu, T.; Kutlug Sahin, E.; Colkesen, I. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng. Geol. 2015, 192, 101–112. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; United Nations: Paris, France, 1984; No. 3. [Google Scholar]
- Bravo-López, E.; Fernández Del Castillo, T.; Sellers, C.; Delgado-García, J. Analysis of Conditioning Factors in Cuenca, Ecuador, for Landslide Susceptibility Maps Generation Employing Machine Learning Methods. Land 2023, 12, 1135. [Google Scholar] [CrossRef]
- Meena, S.R.; Puliero, S.; Bhuyan, K.; Floris, M.; Catani, F. Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy). Nat. Hazards Earth Syst. Sci. 2022, 22, 1395–1417. [Google Scholar] [CrossRef]
- Garcia-Delgado, H.; Petley, D.N.; Bermúdez, M.A.; Sepúlveda, S.A. Fatal landslides in Colombia (from historical times to 2020) and their socio-economic impacts. Landslides 2022, 19, 1689–1716. [Google Scholar] [CrossRef]
- Macías, L.; Quiñonez-Macías, M.; Toulkeridis, T.; Pastor, J.L. Characterization and geophysical evaluation of the recent 2023 Alausí landslide in the northern Andes of Ecuador. Landslides 2024, 21, 529–540. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Teke, A. Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arab. J. Sci. Eng. 2022, 47, 7367–7385. [Google Scholar] [CrossRef]
- Bravo-López, E.; Fernández Del Castillo, T.; Sellers, C.; Delgado-García, J. Landslide Susceptibility Mapping of Landslides with Artificial Neural Networks: Multi-Approach Analysis of Backpropagation Algorithm Applying the Neuralnet Package in Cuenca, Ecuador. Remote Sens. 2022, 14, 3495. [Google Scholar] [CrossRef]
- Chang, Z.; Catani, F.; Huang, F.; Liu, G.; Meena, S.R.; Huang, J.; Zhou, C. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. J. Rock Mech. Geotech. Eng. 2023, 15, 1127–1143. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Herrera-Coy, M.C.; Calderón, L.P.; Herrera-Pérez, I.L.; Bravo-López, P.E.; Conoscenti, C.; Delgado, J.; Sánchez-Gómez, M.; Fernández, T. Landslide Susceptibility Analysis on the Vicinity of Bogotá-Villavicencio Road (Eastern Cordillera of the Colombian Andes). Remote Sens. 2023, 15, 3870. [Google Scholar] [CrossRef]
- Guerrero-Rodriguez, B.; Garcia-Rodriguez, J.; Salvador, J.; Mejia-Escobar, C.; Cadena, S.; Cepeda, J.; Benavent-Lledo, M.; Mulero-Perez, D. Improving landslide prediction by computer vision and deep learning. Integr. Comput. Aided Eng. 2023, 31, 77–94. [Google Scholar] [CrossRef]
- Di Napoli, M.; Miele, P.; Guerriero, L.; Annibali Corona, M.; Calcaterra, D.; Ramondini, M.; Sellers, C.; Di Martire, D. Multitemporal relative landslide exposure and risk analysis for the sustainable development of rapidly growing cities. Landslides 2023, 20, 1781–1795. [Google Scholar] [CrossRef]
- Vega, J.; Sepúlveda-Murillo, F.H.; Parra, M. Landslide Modeling in a Tropical Mountain Basin Using Machine Learning Algorithms and Shapley Additive Explanations. Air Soil Water Res. 2023, 16, 11786221231195824. [Google Scholar] [CrossRef]
- Calderón-Guevara, W.; Sánchez-Silva, M.; Nitescu, B.; Villarraga, D.F. Comparative review of data-driven landslide susceptibility models: Case study in the Eastern Andes mountain range of Colombia. Nat. Hazards 2022, 113, 1105–1132. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V. Conditioning factor determination for mapping and prediction of landslide susceptibility using machine learning algorithms. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications X, Strasbourg, France, 10–12 September 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11156, pp. 97–107. [Google Scholar] [CrossRef]
- Sahin, E.K. Implementation of free and open-source semi-automatic feature engineering tool in landslide susceptibility mapping using the machine-learning algorithms RF, SVM, and XGBoost. Stoch. Environ. Res. Risk Assess. 2023, 37, 1067–1092. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Al-Najjar, H.A.H.; Saeidi, V.; Gibril, M.B.A.; Halin, A.A. A comparison between three conditioning factors dataset for landslide prediction in the Sajadrood catchment of Iran. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 625–632. [Google Scholar] [CrossRef]
- Liao, M.; Wen, H.; Yang, L. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: A case of Wushan and Wuxi counties, China. Catena 2022, 217, 106428. [Google Scholar] [CrossRef]
- Rhys, H. Part 2 Classification. 8 Improving decision trees with random forests and boosting. 8.3 Building your first XGBoost model. In Machine Learning with R, the Tidyverse, and Mlr; Simon and Schuster: New York, NY, USA, 2020. [Google Scholar]
- Badola, S.; Mishra, V.N.; Parkash, S. Landslide susceptibility mapping using XGBoost machine learning method. In Proceedings of the 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 27–29 January 2023; IEEE: Piscataway, NJ, USA, 2023; Volume 1, pp. 1–4. [Google Scholar] [CrossRef]
- Can, R.; Kocaman, S.; Gokceoglu, C. A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey. Appl. Sci. 2021, 11, 4993. [Google Scholar] [CrossRef]
- Sahin, E.K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Sahin, E.K. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto Int. 2022, 37, 2441–2465. [Google Scholar] [CrossRef]
- Sun, D.; Wang, J.; Wen, H.; Ding, Y.; Mi, C. Landslide susceptibility mapping (LSM) based on different boosting and hyperparameter optimization algorithms: A case of Wanzhou District, China. J. Rock Mech. Geotech. Eng. 2024, 16, 3221–3232. [Google Scholar] [CrossRef]
- Wei, A.; Yu, K.; Dai, F.; Gu, F.; Zhang, W.; Liu, Y. Application of Tree-Based Ensemble Models to Landslide Susceptibility Mapping: A Comparative Study. Sustainability 2022, 14, 6330. [Google Scholar] [CrossRef]
- Zhang, W.; He, Y.; Wang, L.; Liu, S.; Meng, X. Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing. Geol. J. 2023, 58, 2372–2387. [Google Scholar] [CrossRef]
- Boehmke, B.; Greenwell, B. 12 Gradient Boosting. 12.5 XGBoost. In Hands-on Machine Learning with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Ghatak, A. 5 Classification. 5.6 Other Variants. 5.6.3 XGBoost. In Machine Learning with R; Springer Nature: Singapore, 2017. [Google Scholar]
- Wang, S.; Zhuang, J.; Zheng, J.; Fan, H.; Kong, J.; Zhan, J. Application of Bayesian Hyperparameter Optimized Random Forest and XGBoost Model for Landslide Susceptibility Mapping. Front. Earth Sci. 2021, 9, 712240. [Google Scholar] [CrossRef]
- Ramasubramanian, K.; Moolayil, J. Classification. XGBoost. In Applied Supervised Learning with R: Use Machine Learning Libraries of R to Build Models That Solve Business Problems and Predict Future Trends; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Miele, P.; Di Napoli, M.; Guerriero, L.; Ramondini, M.; Sellers, C.; Annibali Corona, M.; Di Martire, D. Landslide awareness system (Laws) to increase the resilience and safety of transport infrastructure: The case study of pan-American highway (Cuenca–Ecuador). Remote Sens. 2021, 13, 1564. [Google Scholar] [CrossRef]
- Sellers, C.A.; Buján, S.; Miranda, D. MARLI: A mobile application for regional landslide inventories in Ecuador. Landslides 2021, 18, 3963–3977. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, B.; Li, G.; Huang, D.; Zeng, T.; He, J.; Song, D. Landslide susceptibility mapping in the Loess Plateau of northwest China using three data-driven techniques-a case study from middle Yellow River catchment. Front. Earth Sci. 2023, 10, 1033085. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Hafsa, B. Landslide Susceptibility Mapping Using Bivariate Statistical Models and GIS in Chattagram District, Bangladesh. Geotech. Geol. Eng. 2022, 40, 3687–3710. [Google Scholar] [CrossRef]
- Addis, A. GIS-Based Landslide Susceptibility Mapping Using Frequency Ratio and Shannon Entropy Models in Dejen District, Northwestern Ethiopia. J. Eng. 2023, 2023, 1062388. [Google Scholar] [CrossRef]
- El Hamdouni, I.; Brahim, L.A.; El Mahsani, A.; Abdelouafi, A. The Prevention of Landslides Using the Analytic Hierarchy Process (AHP) in a Geographic Information System (GIS) Environment in the Province of Larache, Morocco. Geomat. Environ. Eng. 2022, 16, 77–93. [Google Scholar] [CrossRef]
- Fobert, M.A.; Singhroy, V.; Spray, J.G. InSAR monitoring of landslide activity in Dominica. Remote Sens. 2021, 13, 815. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Li, Y.; Jiang, J.; Zheng, S. Large scale landslide susceptibility assessment based on machine-learning methods. In Proceedings of the International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2023), Qingdao, China, 1–3 December 2023; Li, H., Wu, H., Eds.; SPIE: Bellingham, WA, USA, 2024; Volume 13105, pp. 310–320. [Google Scholar] [CrossRef]
- Selamat, S.N.; Majid, N.A.; Taha, M.R.; Osman, A. Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia. Land 2022, 11, 833. [Google Scholar] [CrossRef]
- Vorpahl, P.; Elsenbeer, H.; Märker, M.; Schröder, B. How can statistical models help to determine driving factors of landslides? Ecol. Model. 2012, 239, 27–39. [Google Scholar] [CrossRef]
- Conforti, M.; Ietto, F. Modeling shallow landslide susceptibility and assessment of the relative importance of predisposing factors, through a GIS-based statistical analysis. Geosciences 2021, 11, 333. [Google Scholar] [CrossRef]
- Shu, H.; Guo, Z.; Qi, S.; Song, D.; Pourghasemi, H.R.; Ma, J. Integrating landslide typology with weighted frequency ratio model for landslide susceptibility mapping: A case study from Lanzhou city of northwestern China. Remote Sens. 2021, 13, 3623. [Google Scholar] [CrossRef]
- Mitra, R.; Das, J. A comparative assessment of flood susceptibility modelling of GIS-based TOPSIS, VIKOR, and EDAS techniques in the Sub-Himalayan foothills region of Eastern India. Environ. Sci. Pollut. Res. 2023, 30, 16036–16067. [Google Scholar] [CrossRef]
- Li, J.; Cao, Z.; Liu, Q. Waves and Sediment Transport Due to Granular Landslides Impacting Reservoirs. Water Resour. Res. 2019, 55, 495–518. [Google Scholar] [CrossRef]
- Nhu, V.H.; Shirzadi, A.; Shahabi, H.; Singh, S.K.; Al-Ansari, N.; Clague, J.J.; Jaafari, A.; Chen, W.; Miraki, S.; Dou, J.; et al. Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. Int. J. Environ. Res. Public Health 2020, 17, 2749. [Google Scholar] [CrossRef]
- Isola, F.; Lai, S.; Leone, F.; Zoppi, C. Land Take and Landslide Hazard: Spatial Assessment and Policy Implications from a Study Concerning Sardinia. Land 2023, 12, 359. [Google Scholar] [CrossRef]
- Dandridge, C.; Stanley, T.; Kirschbaum, D.; Amatya, P.; Lakshmi, V. The influence of land use and land cover change on landslide susceptibility in the Lower Mekong River Basin. Nat. Hazards 2023, 115, 1499–1523. [Google Scholar] [CrossRef]
- Makonyo, M.; Zahor, Z. GIS-based analysis of landslides susceptibility mapping: A case study of Lushoto district, north-eastern Tanzania. Nat. Hazards 2023, 118, 1085–1115. [Google Scholar] [CrossRef]
- Qi, T.; Zhao, Y.; Meng, X.; Chen, G.; Dijkstra, T. AI-based susceptibility analysis of shallow landslides induced by heavy rainfall in Tianshui, China. Remote Sens. 2021, 13, 1819. [Google Scholar] [CrossRef]
- Caputa, J.; Gorczyca, E. The role of landslides in the evolution of a small mountain river valley (Polish Carpathians). Epis. J. Int. Geosci. 2021, 44, 227–239. [Google Scholar] [CrossRef]
- Tubog, M.V.; Villahermosa, R.L.; Perong, J.G. Landslide Susceptibility Modeling Derived From Remote Sensing, Multi-Criteria Decision Analysis, and GIS Techniques: A Case Study in the Southeast Bohol Province, Philippines. Res. Sq. 2023; Preprint (Version 3). [Google Scholar] [CrossRef]
- Oh, H.J.; Lee, S.; Hong, S.M. Landslide Susceptibility Assessment Using Frequency Ratio Technique with Iterative Random Sampling. J. Sens. 2017, 2017, 3730913. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Chen, Z.; Ren, F.; Feng, L.; Du, Q. Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using smote for Lishui city in Zhejiang province, China. Int. J. Environ. Res. Public Health 2019, 16, 368. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.; Wang, F. The performance of using an autoencoder for prediction and susceptibility assessment of landslides: A case study on landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake in Japan. Geoenviron. Disasters 2019, 6, 19. [Google Scholar] [CrossRef]
- Deparday, V.; Gevaert, C.; Molinario, G.; Soden, R.; Balog-Way, S. Machine Learning for Disaster Risk Management; World Bank: Carroll, NH, USA, 2019. [Google Scholar]
- Dam, N.D.; Amiri, M.; Al-Ansari, N.; Prakash, I.; Le, H.V.; Nguyen, H.B.T.; Pham, B.T. Evaluation of Shannon Entropy and Weights of Evidence Models in Landslide Susceptibility Mapping for the Pithoragarh District of Uttarakhand State, India. Adv. Civ. Eng. 2022, 2022, 6645007. [Google Scholar] [CrossRef]
- Tran, T.H.; Dam, N.D.; Jalal, F.E.; Al-Ansari, N.; Ho, L.S.; Phong, T.V.; Iqbal, M.; Le, H.V.; Nguyen, H.B.T.; Prakash, I.; et al. GIS-Based Soft Computing Models for Landslide Susceptibility Mapping: A Case Study of Pithoragarh District, Uttarakhand State, India. Math. Probl. Eng. 2021, 2021, 9914650. [Google Scholar] [CrossRef]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M.; et al. caret: Classification and Regression Training. R Package Version 6.0-94. 2023. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 24 February 2024).
- Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gómez-Gutiérrez, Á.; Rotigliano, E.; Agnesi, V. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy). Geomorphology 2015, 242, 49–64. [Google Scholar] [CrossRef]
- Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 2014, 113, 236–250. [Google Scholar] [CrossRef]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing classifier performance in R. Bioinformatics 2005, 21, 3940–3941. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Zhang, X.; Hu, T.; Chen, Y.; Zhang, C.; Dong, L.; Ling, S.; Dong, Z.; Zhou, W.D.; Zhang, R.H.; et al. Prediction of the Fundus Tessellation Severity With Machine Learning Methods. Front. Med. 2022, 9, 817114. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H. Machine learning-based predictive modeling of depression in hypertensive populations. PLoS ONE 2022, 17, e0272330. [Google Scholar] [CrossRef]
- Milevski, I.; Dragićević, S. Landslide susceptibility zonation of the territory of North Macedonia using Analytical Hierarchy Process approach. Contrib. Sect. Nat. Math. Biotech. Sci. 2019, 40, 115–126. [Google Scholar] [CrossRef]
- Silalahi, F.E.S.; Yukni Arifianti, P.; Hidayat, F. Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geosci. Lett. 2019, 6, 10. [Google Scholar] [CrossRef]
- Chung, C.J.F.; Fabbri, A.G. Validation of spatial prediction models for landslide hazard mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef]
- Merghadi, A.; Abderrahmane, B.; Tien Bui, D. Landslide susceptibility assessment at Mila basin (Algeria): A comparative assessment of prediction capability of advanced machine learning methods. ISPRS Int. J. Geo-Inf. 2018, 7, 268. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992; pp. 196–202. [Google Scholar] [CrossRef]
- Taalab, K.; Cheng, T.; Zhang, Y. Mapping landslide susceptibility and types using Random Forest. Big Earth Data 2018, 2, 159–178. [Google Scholar] [CrossRef]
- Li, B.; Han, L.; Li, L. A Spatiotemporal Fusion Network to multi source heterogeneous data for landslide recognition. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 10, 77–84. [Google Scholar] [CrossRef]
Condition | Conditioning Factors |
---|---|
Digital Elevation Model (DEM) dependent: 10 factors | Aspect, Curvature, Elevation, Slope, SPI, STI, TPI, TRI, TWI, Solar radiation |
Not Digital Elevation Model (DEM) dependent: 5 factors | Land Cover, Distance to roads, Distance to rivers, Lithology, NDVI |
Most important factors according to feature selection algorithms: 6 factors [7] | Elevation, Slope, TRI, Distance to roads, Lithology, NDVI |
Thematic Variable (Obtained From) | Conditioning Factor | Source | Scale/Resolution |
---|---|---|---|
Topographical (digital elevation model (DEM)) | Aspect, Curvature, Elevation, Slope, SPI, STI, TPI, TRI, TWI, Solar radiation | SIGTIERRAS-IERSE | 3 m |
Land (Soil) Cover (Land cover map Ortophoto Roads layer) | Land cover | SIGTIERRAS | 1:25,000 |
NDVI | 30 cm | ||
Distance to roads | IGM | 1:25,000 | |
Hydrological (Rivers layer) | Distance to rivers | IGM | 1:25,000 |
Geo-lithological (Geological map) | Lithology | SNI | 1:100,000 |
Hyperparameter | Definition | Values |
---|---|---|
nrounds | Number of trees built sequentially in the model | (80, 300) |
max_depth | Maximum depth levels at which each tree can grow | (1, 9) |
eta | Learning rate: the contribution of each tree to the final result | (0.01, 0.5) |
gamma | Minimum amount of division by which a node must improve predictions | (1, 8) |
colsample_bytree | Ratio of predictor variables sampled for each tree | (0.01, 1) |
min_child_weight | Minimum degree of impurity required in a node before splitting it | (1, 10) |
subsample | Proportion of cases to be randomly sampled for each tree. | (0.1, 1) |
Feature | Version/Amount |
---|---|
Operating System | Ubuntu 20.04.5 LTS |
Cores | 16 |
RAM | 32 GB |
GPU | 1 |
R version | 4.2.0 |
Hyperparameter | Default Values | Best Values | Alternative Values |
---|---|---|---|
nrounds | 100 | 300 | 150 |
max_depth | 6 | 6 | 6 |
eta | 0.3 | 0.03 | 0.1 |
gamma | 0 | 2 | 3 |
colsample_bytree | 1 | 0.5 | 0.5 |
min_child_weight | 1 | 1 | 1 |
subsample | 1 | 0.3 | 0.5 |
Runtime (seconds) | Not executed | 40,169″ | 3116″ |
Conditioning Factors Combination | Model with Best Values | Model with Alternative Values |
---|---|---|
6 best factors | 0.83 | 0.81 |
DEM factors | 0.73 | 0.66 |
Not DEM factors | 0.77 | 0.79 |
Algorithm | AUC (Testing) | F-Score (Testing) |
---|---|---|
6 Factors (sampling 1) | 0.83 | 0.73 |
6 Factors (sampling 2) | 0.81 | 0.72 |
DEM Factors (sampling 1) | 0.68 | 0.61 |
DEM Factors (sampling 2) | 0.73 | 0.63 |
Not DEM Factors (sampling 1) | 0.79 | 0.71 |
Not DEM Factors (sampling 2) | 0.77 | 0.70 |
6 Factors (Sampling 1) | |||
Susceptibility | Pixel Amount | Pixels (%) | Landslides (%) |
Very low | 8,494,988 | 19.98 | 0.9 |
Low | 8,553,872 | 20.12 | 0.8 |
Medium | 8,522,070 | 20.04 | 5.5 |
High | 8,466,887 | 19.91 | 15.3 |
Very high | 8,485,999 | 19.96 | 77.5 |
No data | 19,736,409 | - | - |
6 Factors (Sampling 2) | |||
Susceptibility | Pixel Amount | Pixels (%) | Landslides (%) |
Very low | 8,467,426 | 19.91 | 0.9 |
Low | 8,566,863 | 20.15 | 7.2 |
Medium | 8,556,299 | 20.12 | 18.3 |
High | 8,414,341 | 19.79 | 30.2 |
Very high | 8,518,887 | 20.03 | 43.3 |
No data | 19,736,409 | - | - |
DEM Factors (Sampling 1) | |||
Susceptibility | Pixel Amount | Pixels (%) | Landslides (%) |
Very low | 8,435,837 | 19.85 | 1.1 |
Low | 8,567,993 | 20.16 | 4.9 |
Medium | 8,521,289 | 20.05 | 6.8 |
High | 8,553,403 | 20.08 | 19.5 |
Very high | 8,438,526 | 19.86 | 67.7 |
No data | 19,728,184 | - | - |
DEM Factors (Sampling 2) | |||
Susceptibility | Pixel Amount | Pixels (%) | Landslides (%) |
Very low | 8,456,062 | 19.90 | 2.3 |
Low | 8,501,778 | 20.01 | 13.4 |
Medium | 8,510,982 | 20.03 | 24.8 |
High | 8,580,816 | 20.19 | 26.7 |
Very high | 8,447,410 | 19.88 | 32.9 |
No data | 19,728,184 | - | - |
Not DEM Factors (Sampling 1) | |||
Susceptibility | Pixel Amount | Pixels (%) | Landslides (%) |
Very low | 8,581,382 | 20.23 | 1.7 |
Low | 8,510,254 | 20.07 | 3.0 |
Medium | 8,481,102 | 20.00 | 9.1 |
High | 8,509,505 | 20.06 | 18.5 |
Very high | 8,330,078 | 19.64 | 67.7 |
No data | 19,051,719 | - | - |
Not DEM Factors (Sampling 2) | |||
Susceptibility | Pixel Amount | Pixels (%) | Landslides (%) |
Very low | 8,462,700 | 19.95 | 4.7 |
Low | 8,506,056 | 20.06 | 9.1 |
Medium | 8,415,932 | 19.84 | 17.8 |
High | 8,585,280 | 20.24 | 26.1 |
Very high | 8,442,353 | 19.91 | 42.3 |
No data | 19,051,719 | - | - |
6 Factors (S1) | 6 Factors (S2) | DEM (S1) | DEM (S2) | NO DEM (S1) | NO DEM (S2) | |
---|---|---|---|---|---|---|
6 factors (S1) | 0 | 0.0156 | 0.0122 | 0.0083 | 0.0275 | 0.0081 |
6 factors (S2) | 0 | 0.9618 | 0.4076 | 0.3633 | 0.0386 | |
DEM (S1) | 0 | 0.8338 | 0.7432 | 0.7544 | ||
DEM (S2) | 0 | 0.3870 | 0.8453 | |||
NO DEM (S1) | 0 | 0.1212 | ||||
NO DEM (S2) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo-López, E.; Fernández, T.; Sellers, C.; Delgado-García, J. Combination of Conditioning Factors for Generation of Landslide Susceptibility Maps by Extreme Gradient Boosting in Cuenca, Ecuador. Algorithms 2025, 18, 258. https://doi.org/10.3390/a18050258
Bravo-López E, Fernández T, Sellers C, Delgado-García J. Combination of Conditioning Factors for Generation of Landslide Susceptibility Maps by Extreme Gradient Boosting in Cuenca, Ecuador. Algorithms. 2025; 18(5):258. https://doi.org/10.3390/a18050258
Chicago/Turabian StyleBravo-López, Esteban, Tomás Fernández, Chester Sellers, and Jorge Delgado-García. 2025. "Combination of Conditioning Factors for Generation of Landslide Susceptibility Maps by Extreme Gradient Boosting in Cuenca, Ecuador" Algorithms 18, no. 5: 258. https://doi.org/10.3390/a18050258
APA StyleBravo-López, E., Fernández, T., Sellers, C., & Delgado-García, J. (2025). Combination of Conditioning Factors for Generation of Landslide Susceptibility Maps by Extreme Gradient Boosting in Cuenca, Ecuador. Algorithms, 18(5), 258. https://doi.org/10.3390/a18050258