Improved Cryptanalysis of Some RSA Variants
Abstract
:1. Introduction
1.1. Our Contribution
1.2. The Structure of the Paper
2. Preliminaries
2.1. Useful Lemmas
2.2. Schemes with the Key Equation
2.3. Lattice Reduction and Coppersmith’s Technique
- 1.
- ,
- 2.
- ,
- 3.
- For all , ,
3. Main Results
The New Attack
4. Comparison with the Existing Attacks
4.1. Comparison with Peng et al.’s Attack
4.2. Comparison with Feng et al.’s Attack
5. Experimental Results
5.1. A Numerical Example with a Sufficiently Small Prime Gap
5.2. A Numerical Example Highlighting the Use of a Proper Approximation
5.3. Experiments with Large Examples
- represents the bit-length of the value n.
- is a parameter where holds.
- denotes a parameter such that .
- is defined through the relation .
- corresponds to a parameter satisfying .
- is a parameter satisfying .
- denotes the number of known most significant bits of p.
- and are parameters involved in the construction of the lattice , which has dimension as shown in Theorem 3.
- refers to the computation time in seconds required for executing the LLL algorithm and the Gröbner basis computation.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RSA | Rivest, Shamir, Adleman |
CRT | Chinese Remainder Theorem |
LLL | Lenstra, Lenstra, and Lovász |
References
- Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [Google Scholar] [CrossRef]
- Rivest, R.; Shamir, A.; Adleman, L. A Method for Obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Wiener, M. Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 1990, 36, 553–558. [Google Scholar] [CrossRef]
- Boneh, D.; Durfee, G. Cryptanalysis of RSA with private key d less than N0.292, Advances in Cryptology-Eurocrypt’99. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1592; pp. 1–11. [Google Scholar]
- Quisquater, J.J.; Couvreur, C. Fast decipherment algorithm for RSA public-key cryptosystem. Electron. Lett. 1982, 18, 905–907. [Google Scholar] [CrossRef]
- Collins, T.; Hopkins, D.; Langford, S.; Sabin, M. Public Key Cryptographic Apparatus and Method. US Patent #5,848,159, 8 December 1998. [Google Scholar]
- Kuwakado, H.; Koyama, K.; Tsuruoka, Y. A New RSA-Type Scheme Based on Singular Cubic Curves with equation y2 ≡ x3 + bx2 (mod N). IEICE Trans. Fundam. 1995, 78, 27–33. [Google Scholar]
- Elkamchouchi, H.; Elshenawy, K.; Shaban, H. Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers. In Proceedings of the The 8th International Conference on Communication Systems, Singapore, 28–28 November 2002; Volume 1, pp. 91–95. [Google Scholar]
- Said, M.R.M.; Loxton, J. A cubic analogue of the RSA cryptosystem. Bull. Aust. Math. Soc. 2003, 68, 21–38. [Google Scholar] [CrossRef]
- Smith, P.J.; Lennon, M.J.J. LUC: A New Public Key System. In Proceedings of the ninth IFIP International Symposium on Computer Security, Toronto, ON, Canada, 12–14 May 1993; pp. 103–117. [Google Scholar]
- Boneh, D. Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math. Soc. 1999, 46, 203–213. [Google Scholar]
- Peng, L.; Hu, L.; Lu, Y.; Wei, H. An improved analysis on three variants of the RSA cryptosystem. Int. Conf. Inf. Secur. Cryptol. 2016, 10143, 140–149. [Google Scholar]
- Feng, Y.; Nitaj, A.; Pan, Y. Partial prime factor exposure attacks on some RSA variants. Theor. Comput. Sci. 2024, 999, 114549. [Google Scholar] [CrossRef]
- Nitaj, A. Another Generalization of Wiener’s Attack on RSA; Africacrypt 2008 LNCS; Vaudenay, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5023, pp. 174–190. [Google Scholar]
- Castagnos, G. An efficient probabilistic public-key cryptosystem over quadratic fields quotients. Finite Fields Their Appl. 2007, 13, 563–576. [Google Scholar] [CrossRef]
- Lenstra, A.K.; Lenstra, H.W. Lovász, L. Factoring polynomials with rational coefficients. Math. Ann. 1982, 261, 513–534. [Google Scholar] [CrossRef]
- May, A. New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. Thesis, University of Paderborn, Paderborn, Germany, 2003. [Google Scholar]
- Coppersmith, D. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 1997, 10, 233–260. [Google Scholar] [CrossRef]
- Howgrave-Graham, N. Finding small roots of univariate modular equations revisited. In Proceedings of the IMA International Conference on Cryptography and Coding, LNCS 1355, Cirencester, UK, 17–19 December 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 131–142. [Google Scholar]
- Jochemsz, E.; May, A. A Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants; ASIACRYPT 2006, LNCS 4284; Springer: Berlin/Heidelberg, Germany, 2006; pp. 267–282. [Google Scholar]
- Zheng, M.; Kunihiro, N.; Yao, Y. Cryptanalysis of the RSA variant based on cubic Pell equation. Theor. Comput. Sci. 2021, 889, 135–144. [Google Scholar] [CrossRef]
- The Sage Developers: SageMath, the Sage Mathematics Software System (Version 10.4) (2025). Available online: https://www.sagemath.org (accessed on 8 April 2025).
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | ★ | ★ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
★ | 0 | ★ | 0 | 0 | ★ | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | ★ | ★ | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | ★ | 0 | 0 | ★ | 0 | 0 | ★ | 0 | 0 | 0 | ||
0 | ★ | 0 | ★ | ★ | 0 | 0 | ★ | ★ | 0 | 0 | ||
0 | ★ | ★ | 0 | ★ | ★ | 0 | ★ | ★ | ★ | 0 | ||
★ | ★ | ★ | 0 | 0 | ★ | ★ | ★ | ★ | ★ | ★ |
bl(N) | bl(e) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1024 | 2047 | 0.390 | 1.994 | 2.00 | 0.488 | 0.293 | 212 | 3 | 3 | 52 | 8.00 |
1100 | 2198 | 0.454 | 1.999 | 2.00 | 0.490 | 0.266 | 250 | 3 | 3 | 52 | 10.09 |
1200 | 2398 | 0.426 | 1.999 | 2.00 | 0.500 | 0.325 | 210 | 3 | 3 | 52 | 9.98 |
1300 | 2598 | 0.477 | 2.000 | 2.00 | 0.500 | 0.317 | 237 | 3 | 3 | 52 | 10.48 |
1400 | 2797 | 0.486 | 1.999 | 2.00 | 0.500 | 0.279 | 310 | 3 | 3 | 52 | 14.81 |
1500 | 2997 | 0.487 | 1.999 | 2.00 | 0.500 | 0.328 | 255 | 3 | 3 | 52 | 13.15 |
1600 | 3199 | 0.469 | 1.999 | 2.00 | 0.500 | 0.355 | 231 | 3 | 2 | 40 | 5.34 |
1700 | 3399 | 0.494 | 2.000 | 2.00 | 0.500 | 0.347 | 260 | 3 | 2 | 40 | 5.69 |
1800 | 3595 | 0.497 | 2.000 | 2.00 | 0.506 | 0.366 | 241 | 3 | 1 | 22 | 1.38 |
1900 | 3794 | 0.495 | 2.000 | 2.00 | 0.500 | 0.316 | 350 | 3 | 1 | 22 | 1.98 |
2048 | 4096 | 0.487 | 2.000 | 2.00 | 0.488 | 0.369 | 269 | 2 | 2 | 21 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, M.; Nitaj, A.; Ziane, M. Improved Cryptanalysis of Some RSA Variants. Algorithms 2025, 18, 223. https://doi.org/10.3390/a18040223
Rahmani M, Nitaj A, Ziane M. Improved Cryptanalysis of Some RSA Variants. Algorithms. 2025; 18(4):223. https://doi.org/10.3390/a18040223
Chicago/Turabian StyleRahmani, Mohammed, Abderrahmane Nitaj, and Mhammed Ziane. 2025. "Improved Cryptanalysis of Some RSA Variants" Algorithms 18, no. 4: 223. https://doi.org/10.3390/a18040223
APA StyleRahmani, M., Nitaj, A., & Ziane, M. (2025). Improved Cryptanalysis of Some RSA Variants. Algorithms, 18(4), 223. https://doi.org/10.3390/a18040223