Image Deconvolution to Resolve Astronomical X-Ray Sources in Close Proximity: The NuSTAR Images of SXP 15.3 and SXP 305
Abstract
:1. Introduction
1.1. Astronomical Point Sources and X-Ray Telescopes
1.2. Image Deconvolution
1.3. High-Mass X-Ray Binary Pulsars
1.4. The Magellanic Pulsars SXP 15.3 and SXP 305
1.5. Outline
2. Methodology
2.1. General Framework for Image Deconvolution
- Direct methods: These include Fourier-based deconvolution and Wiener filtering, which are computationally efficient but very sensitive to the noise content.
- Iterative methods: Methods such as the Richardson–Lucy algorithm refine the estimate during successive iterations and are very effective against Poisson noise.
- Bayesian methods: These incorporate prior knowledge about the image, such as smoothness or sparsity, to guide the cleaning algorithm.
- Machine learning approaches: Neural networks trained on simulated data can directly predict the ‘true’ image from the observed outcome [19].
2.1.1. The Richardson–Lucy Algorithm: Motivation
2.1.2. The Richardson–Lucy Algorithm: Procedure
- Initialization: Start with an initial guess for the true image, typically a uniform image or a given .
- Update rule: Correct the estimate iteratively based on the ratio of observed data to the simulated blurred estimate.
- Stopping criterion: Stop the iteration when the changes in are negligible or when the residual error is sufficiently small.
2.2. NuSTAR Data Analysis
2.3. NuSTAR PSF
3. Results
3.1. Deconvolution of Simulated NuSTAR Images
3.2. Deconvolution of the SXP 15.3–SXP 305 Pair
3.3. Pulse Phase-Resolved Deconvolution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CALDB | calibration database |
DOAJ | Directory of Open Access Journals |
FPMA | focal plane module A |
FPMB | focal plane module B |
HEASARC | High Energy Astrophysics Science Archive Research Center |
HEASoft | High Energy Astrophysics Software |
HMXB | high-mass X-ray binary |
HPD | half-power diameter |
LD | linear dichroism |
NS | neutron star |
NuSTAR | Nuclear Spectroscopic Telescope Array |
NuSTARDAS | NuSTAR data analysis software |
PSF | point spread function |
RL | Richardson–Lucy |
SMC | Small Magellanic Cloud |
S/N | signal-to-noise |
SXP | SMC X-ray pulsar |
TLA | three-letter acronym |
XIS | X-ray imaging spectrometer |
XMM | X-ray multi-mirror mission |
XRB | X-ray binary pulsar |
References
- Starck, J.L.; Murtagh, F. Astronomical Image and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lewin, W.H.; van den Heuvel, E.P.; van Paradijs, J. X-Ray Binaries; Cambridge University Press: Cambridge, UK, 1997; Volume 26. [Google Scholar]
- Tanaka, Y.; Shibazaki, N. X-ray Novae. Annu. Rev. Astron. Astrophys. 1996, 34, 607–644. [Google Scholar]
- Padovani, P.; Alexander, D.; Assef, R.; De Marco, B.; Giommi, P.; Hickox, R.; Richards, G.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar]
- Reynolds, S.P. Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 2008, 46, 89–126. [Google Scholar]
- Sarazin, C.L. X-ray emission from clusters of galaxies. Rev. Mod. Phys. 1986, 58, 1. [Google Scholar]
- Cohen, J.G. Star formation and X-ray emission in distant star-forming galaxies. Astrophys. J. 2003, 598, 288. [Google Scholar]
- Putman, M.; Peek, J.; Joung, M. Gaseous galaxy halos. Annu. Rev. Astron. Astrophys. 2012, 50, 491–529. [Google Scholar]
- Weisskopf, M.; Brinkman, B.; Canizares, C.; Garmire, G.; Murray, S.; Van Speybroeck, L. An overview of the performance and scientific results from the Chandra X-Ray Observatory. Publ. Astron. Soc. Pac. 2002, 114, 1. [Google Scholar]
- Harrison, F.A.; Craig, W.W.; Christensen, F.E.; Hailey, C.J.; Zhang, W.W.; Boggs, S.E.; Stern, D.; Cook, W.R.; Forster, K.; Giommi, P.; et al. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission. Astrophys. J. 2013, 770, 103. [Google Scholar]
- Jansen, F.; Lumb, D.; Altieri, B.; Clavel, J.; Ehle, M.; Erd, C.; Gabriel, C.; Guainazzi, M.; Gondoin, P.; Much, R.; et al. XMM-Newton observatory-I. The spacecraft and operations. Astron. Astrophys. 2001, 365, L1–L6. [Google Scholar]
- Sakai, Y.; Yamada, S.; Sato, T.; Hayakawa, R.; Higurashi, R.; Kominato, N. Richardson–Lucy Deconvolution with a Spatially Variant Point-spread Function of Chandra: Supernova Remnant Cassiopeia A as an Example. Astrophys. J. 2023, 951, 59. [Google Scholar]
- Koyama, K.; Tsunemi, H.; Dotani, T.; Bautz, M.W.; Hayashida, K.; Tsuru, T.G.; Matsumoto, H.; Ogawara, Y.; Ricker, G.R.; Doty, J.; et al. X-ray imaging spectrometer (XIS) on board Suzaku. Publ. Astron. Soc. Jpn. 2007, 59, S23–S33. [Google Scholar] [CrossRef]
- Sugizaki, M.; Kamae, T.; Maeda, Y. Deconvolution of Images Taken with the Suzaku X-Ray Imaging Spectrometer. Publ. Astron. Soc. Jpn. 2009, 61, S55–S67. [Google Scholar] [CrossRef]
- Richardson, W.H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 1972, 62, 55–59. [Google Scholar] [CrossRef]
- Lucy, L.B. An iterative technique for the rectification of observed distributions. Astron. J. 1974, 79, 745. [Google Scholar] [CrossRef]
- Bonettini, S.; Cornelio, A.; Prato, M. A new semiblind deconvolution approach for Fourier-based image restoration: An application in astronomy. SIAM J. Imaging Sci. 2013, 6, 1736–1757. [Google Scholar] [CrossRef]
- Mertens, F.; Lobanov, A. Wavelet-based decomposition and analysis of structural patterns in astronomical images. Astron. Astrophys. 2015, 574, A67. [Google Scholar] [CrossRef]
- Akhaury, U.; Starck, J.L.; Jablonka, P.; Courbin, F.; Michalewicz, K. Deep learning-based galaxy image deconvolution. Front. Astron. Space Sci. 2022, 9, 1001043. [Google Scholar]
- Caballero, I.; Wilms, J. X-ray pulsars: A review. arXiv 2012, arXiv:1206.3124. [Google Scholar]
- Coe, M.; Kirk, J. Catalogue of Be/X-ray binary systems in the Small Magellanic Cloud: X-ray, optical and IR properties. Mon. Not. R. Astron. Soc. 2015, 452, 969–977. [Google Scholar] [CrossRef]
- Reig, P. Be/X-ray binaries. Astrophys. Space Sci. 2011, 332, 1–29. [Google Scholar] [CrossRef]
- Kretschmar, P.; Fürst, F.; Sidoli, L.; Bozzo, E.; Alfonso-Garzón, J.; Bodaghee, A.; Chaty, S.; Chernyakova, M.; Ferrigno, C.; Manousakis, A.; et al. Advances in understanding high-mass X-ray binaries with INTEGRALand future directions. New Astron. Rev. 2019, 86, 101546. [Google Scholar]
- Okazaki, A.; Negueruela, I. A natural explanation for periodic X-ray outbursts in Be/X-ray binaries. Astron. Astrophys. 2001, 377, 161–174. [Google Scholar]
- Haberl, F.; Sturm, R. High-mass X-ray binaries in the Small Magellanic Cloud. Astron. Astrophys. 2016, 586, A81. [Google Scholar]
- Antoniou, V.; Zezas, A.; Hatzidimitriou, D.; Kalogera, V. Star formation history and X-ray binary populations: The case of the Small Magellanic Cloud. Astrophys. J. Lett. 2010, 716, L140. [Google Scholar]
- Scowcroft, V.; Freedman, W.L.; Madore, B.F.; Monson, A.; Persson, S.E.; Rich, J.; Seibert, M.; Rigby, J.R. The Carnegie Hubble Program: The distance and structure of the SMC as revealed by mid-infrared observations of Cepheids. Astrophys. J. 2016, 816, 49. [Google Scholar]
- Lazzarini, M.; Williams, B.; Hornschemeier, A.; Antoniou, V.; Vasilopoulos, G.; Haberl, F.; Vulic, N.; Yukita, M.; Zezas, A.; Bodaghee, A.; et al. Neutron stars and black holes in the small magellanic cloud: The SMC NuSTAR legacy survey. Astrophys. J. 2019, 884, 2. [Google Scholar]
- Monageng, I.M.; Coe, M.J.; Townsend, L.J.; Laycock, S.G.; Kennea, J.A.; Roy, A.; Udalski, A.; Bhattacharya, S.; Christodoulou, D.M.; Buckley, D.A.; et al. Disentangling the neighbouring pulsars SXP 15.3 and SXP 305. Mon. Not. R. Astron. Soc. 2022, 511, 6075–6086. [Google Scholar]
- Galache, J.; Corbet, R.; Coe, M.; Laycock, S.; Schurch, M.; Markwardt, C.; Marshall, F.; Lochner, J. A long look at the be/x-ray binaries of the small magellanic cloud. Astrophys. J. Suppl. Ser. 2008, 177, 189. [Google Scholar]
- Christodoulou, D.M.; Laycock, S.G.; Yang, J.; Fingerman, S. Determination of the magnetic fields of Magellanic X-ray pulsars. Res. Astron. Astrophys. 2017, 17, 059. [Google Scholar]
- Maitra, C.; Paul, B.; Haberl, F.; Vasilopoulos, G. Detection of a cyclotron line in SXP 15.3 during its 2017 outburst. Mon. Not. R. Astron. Soc. Lett. 2018, 480, L136–L140. [Google Scholar]
- Vio, R.; Bardsley, J.; Wamsteker, W. Least-squares methods with Poissonian noise: Analysis and comparison with the Richardson-Lucy algorithm. Astron. Astrophys. 2005, 436, 741–755. [Google Scholar]
- Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharya, S.; Christodoulou, D.M.; Laycock, S.G.T. Image Deconvolution to Resolve Astronomical X-Ray Sources in Close Proximity: The NuSTAR Images of SXP 15.3 and SXP 305. Algorithms 2025, 18, 191. https://doi.org/10.3390/a18040191
Bhattacharya S, Christodoulou DM, Laycock SGT. Image Deconvolution to Resolve Astronomical X-Ray Sources in Close Proximity: The NuSTAR Images of SXP 15.3 and SXP 305. Algorithms. 2025; 18(4):191. https://doi.org/10.3390/a18040191
Chicago/Turabian StyleBhattacharya, Sayantan, Dimitris M. Christodoulou, and Silas G. T. Laycock. 2025. "Image Deconvolution to Resolve Astronomical X-Ray Sources in Close Proximity: The NuSTAR Images of SXP 15.3 and SXP 305" Algorithms 18, no. 4: 191. https://doi.org/10.3390/a18040191
APA StyleBhattacharya, S., Christodoulou, D. M., & Laycock, S. G. T. (2025). Image Deconvolution to Resolve Astronomical X-Ray Sources in Close Proximity: The NuSTAR Images of SXP 15.3 and SXP 305. Algorithms, 18(4), 191. https://doi.org/10.3390/a18040191