Computation of Bounds for Polynomial Dynamic Systems
Abstract
1. Introduction
2. Mathematical Preliminaries
2.1. Nonlinear Systems and Positive Invariant Sets
2.2. Quantifier Elimination
3. Motivational Example
4. Results
4.1. Description of Local Positive Definiteness by Prenex Formulas
4.2. Necessary Condition
4.3. Description of Definiteness at Large Values
5. Chua’s Circuit with Cubic Nonlinearity
5.1. System Model
5.2. Structure of the Quadratic Lyapunov-like Candidate Function
5.3. Parametrization of the Quadratic Lyapunov-like Candidate Function
5.4. Computation of the Bounds
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| QE | quantifier elimination |
| CAD | cylindrical algebraic decomposition |
| VS | virtual substitution |
| SOS | sum of squares |
References
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice-Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Khalil, H.K. Nonlinear Control; Pearson: Essex, UK, 2015. [Google Scholar]
- Leonov, G.A.; Bunin, A.I.; Koksch, N. Attraktorlokalisierung des Lorenz-Systems. ZAMM-Appl. Math. Mech. 1987, 67, 649–656. [Google Scholar] [CrossRef]
- Sparrow, C. The Lorenz Equations: Birfucations, Chaos, and Strange Atractors; Springer: New York, NY, USA, 1982. [Google Scholar]
- Li, D.; an Lu, J.; Wu, X.; Chen, G. Estimating the bounds for the Lorenz family of chaotic systems. Chaos Solitons Fractals 2005, 23, 529–534. [Google Scholar] [CrossRef]
- Reitmann, V.; Leonov, G.A. Attraktoreingrenzung für nichtlineare Systeme. In Teubner-Texte zur Mathematik; BSB Teubner: Leipzig, Germany, 1987; Volume 97. [Google Scholar]
- Kuznetsov, N.; Reitmann, V. Attractor Dimension Estimates for Dynamical Systems: Theory and Computation; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Tarski, A. A Decision Method for Elementary Algebra and Geometry; Project rand; Rand Corporation: Santa Monica, CA, USA, 1948. [Google Scholar]
- Caviness, B.F.; Johnson, J.R. (Eds.) Quantifier Elimination and Cylindical Algebraic Decomposition; Springer: Wien, Austria, 1998. [Google Scholar]
- She, Z.; Xia, B.; Xiao, R.; Zheng, Z. A semi-algebraic approach for asymptotic stability analysis. Nonlinear Anal. Hybrid Syst. 2009, 3, 588–596. [Google Scholar] [CrossRef]
- Tong, J.; Bajcinca, N. Computation of Feasible Parametric Regions for Common Quadratic Lyapunov Functions. In Proceedings of the European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; pp. 807–812. [Google Scholar]
- Röbenack, K.; Voßwinkel, R.; Richter, H. Automatic Generation of Bounds for Polynomial Systems with Application to the Lorenz System. Chaos Solitons Fractals 2018, 113C, 25–30. [Google Scholar] [CrossRef]
- Röbenack, K.; Voßwinkel, R.; Richter, H. Calculating Positive Invariant Sets: A Quantifier Elimination Approach. J. Comput. Nonlinear Dyn. 2019, 14, 074502. [Google Scholar] [CrossRef]
- Röbenack, K. Formal Calculation of Positive Invariant Sets for the Lorenz Family Combining Lyapunov Approaches and Quantifier Elimination. Proc. Appl. Math. Mech. 2021, 20, e202000161. [Google Scholar] [CrossRef]
- Natkowski, L.; Gerbet, D.; Röbenack, K. On the Systematic Construction of Lyapunov Functions for Polynomial Systems. Proc. Appl. Math. Mech. 2023, 23, e202200197. [Google Scholar] [CrossRef]
- Pogromsky, A.Y.; Santoboni, G.; Nijmeijer, H. An ultimate bound on the trajectories of the Lorenz system and its applications. Nonlinearity 2003, 16, 1597–1605. [Google Scholar] [CrossRef]
- Isidori, A. Nonlinear Control Systems II; Springer: London, UK, 1999. [Google Scholar]
- Krishchenko, A.P. Localization of invariant compact sets of dynamical systems. Differ. Equ. 2005, 41, 1669–1676. [Google Scholar] [CrossRef]
- Gilbert, G.T. Positive definite matrices and Sylvester’s criterion. Am. Math. Mon. 1991, 98, 44–46. [Google Scholar] [CrossRef]
- Marcus, M.; Minc, H. A Survey of Matrix Theory and Matrix Inequalities; Dover: New York, NY, USA, 1992. [Google Scholar]
- Tibken, B.; Dilaver, K.F. Computation of subsets of the domain of attraction for polynomial systems. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 10–13 December 2002; Volume 3, pp. 2651–2656. [Google Scholar]
- Ichihara, H. Sum of Squares Based Input-to-State Stability Analysis of Polynomial Nonlinear Systems. SICE J. Control. Meas. Syst. Integr. 2012, 5, 218–225. [Google Scholar] [CrossRef]
- Seidenberg, A. A New Decision Method for Elementary Algebra. Ann. Math. 1954, 60, 365–374. [Google Scholar] [CrossRef]
- Collins, G.E. Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In Proceedings of the Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, Kaiserslautern, Germany, 20–23 May 1975; Springer: Berlin/Heidelberg, Germany, 1975; pp. 134–183. [Google Scholar]
- Collins, G.E.; Hong, H. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination. J. Symb. Comput. 1991, 12, 299–328. [Google Scholar] [CrossRef]
- Weispfenning, V. The complexity of linear problems in fields. J. Symb. Comput. 1988, 5, 3–27. [Google Scholar] [CrossRef]
- Sturm, T. Thirty Years of Virtual Substitution: Foundations, Techniques, Applications. In Proceedings of the 2018 ACM on International Symposium on Symbolic and Algebraic Computation; ACM: New York, NY, USA, 2018; pp. 11–16. [Google Scholar]
- Gonzalez-Vega, L.; Lombardi, H.; Recio, T.; Roy, M.F. Sturm-Habicht Sequence. In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, Portland, OR, USA, 17–19 July 1989; pp. 136–146. [Google Scholar] [CrossRef]
- Davenport, J.H.; Heintz, J. Real quantifier elimination is doubly exponential. J. Symb. Comput. 1988, 5, 29–35. [Google Scholar] [CrossRef]
- Brown, C.W.; Davenport, J.H. The complexity of quantifier elimination and cylindrical algebraic decomposition. In Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, Waterloo, ON, Canada, 28 July–1 August 2007; pp. 54–60. [Google Scholar] [CrossRef]
- Weispfenning, V. Quantifier Elimination for Real Algebra – the Cubic Case. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC), Oxford, UK, 20–22 July 1994; pp. 258–263. [Google Scholar] [CrossRef]
- Košta, M.; Sturm, T. A Generalized Framework for Virtual Substitution. arXiv 2015, arXiv:1501.05826. [Google Scholar] [CrossRef]
- Košta, M. New Concepts for Real Quantifier Elimination by Virtual Substitution. Ph.D. Thesis, Universität des Saarlandes, Fakultät für Mathematik und Informatik, Saarbrücken, Germany, 2016. [Google Scholar] [CrossRef]
- Brown, C.W. QEPCAD B: A program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 2003, 37, 97–108. [Google Scholar] [CrossRef]
- Dolzmann, A.; Sturm, T. Redlog: Computer algebra meets computer logic. ACM SIGSAM Bull. 1997, 31, 2–9. [Google Scholar] [CrossRef]
- Brown, C.W.; Gross, C. Efficient preprocessing methods for quantifier elimination. In Proceedings of the CASC. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4194, pp. 89–100. [Google Scholar]
- Iwane, H.; Yanami, H.; Anai, H. SyNRAC: A Toolbox for Solving Real Algebraic Constraints. In Proceedings of the Mathematical Software—ICMS 2014, Lecture Notes in Computer Science; Hong, H., Yap, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8592, pp. 518–522. [Google Scholar]
- Chen, C.; Maza, M.M. Quantifier elimination by cylindrical algebraic decomposition based on regular chains. J. Symb. Comput. 2016, 75, 74–93. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic non-periodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Ge, Z.M.; Li, S.Y. Yang and Yin parameters in the Lorenz system. Nonlinear Dyn. 2010, 62, 105–117. [Google Scholar] [CrossRef]
- Algaba, A.; Domínguez-Moreno, M.; Merino, M.; Rodríguez-Luis, A.J. Takens–Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 328–343. [Google Scholar] [CrossRef]
- Krishchenko, A.P.; Starkov, K.E. Localization of compact invariant sets of the Lorenz system. Phys. Lett. A 2006, 353, 383–388. [Google Scholar] [CrossRef]
- Li, D.; an Lu, J.; Wu, X.; Chen, G. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 2006, 323, 844–853. [Google Scholar] [CrossRef]
- McCaffrey, D. Geometric existence theory for the control-affine H∞ problem. J. Math. Anal. Appl. 2006, 324, 682–695. [Google Scholar] [CrossRef]
- Abou-Kandil, H.; Freiling, G.; Ionescu, V.; Jank, G. Symmetric differential Riccati equations: An operator based approach. In Matrix Riccati Equations in Control and Systems Theory; Springer: Berlin/Heidelberg, Germany, 2003; pp. 411–466. [Google Scholar]
- Matsumoto, T. A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 1984, 31, 1055–1058. [Google Scholar] [CrossRef]
- Chua, L.O. The genesis of Chua’s circuit. Arch. Elektron. Übertragungstechnik (AEÜ) 1992, 46, 250–257. [Google Scholar]
- Kennedy, M.P. Robust OP AMP realization of Chua’s circuit. Frequenz 1992, 3–4, 66–80. [Google Scholar] [CrossRef]
- Zhong, G.Q. Implementation of Chua’s Circuit with a Cubic Nonlinearity. IEEE Trans. Circuits Syst. I 1994, 41, 934–941. [Google Scholar] [CrossRef]
- Röbenack, K. Regler- und Beobachterentwurf für nichtlineare Systeme mit Hilfe des Automatischen Differenzierens; Shaker Verlag: Aachen, Germany, 2005. [Google Scholar]
- The Sage Developers. SageMath, the Sage Mathematics Software System, Version 10.2. 2024. Available online: https://www.sagemath.org.
- Rössler, O.E. Continuous Chaos — Four Prototyp Equations. Ann. N. Y. Acad. Sci. 1979, 316, 376–392. [Google Scholar] [CrossRef]
- Sprott, J.C. Some simple chaotic flows. Phys. Rev. E 1994, 50, R647. [Google Scholar] [CrossRef]
- Sprott, J.C. Simple chaotic systems and circuits. Am. J. Phys. 2000, 68, 758–763. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Leonov, G. Hidden attractors in dynamical systems: Systems with no equilibria, multistability and coexisting attractors. IFAC Proc. Vol. 2014, 47, 5445–5454. [Google Scholar] [CrossRef]
- Sepulchre, R.; Janković, M.; Kokotović, P. Constructive Nonlinear Control; Springer: London, UK, 1997. [Google Scholar]
- Yegorov, I.; Dower, P.M.; Grüne, L. Synthesis of control Lyapunov functions and stabilizing feedback strategies using exit-time optimal control Part II: Numerical approach. Optim. Control Appl. Methods 2021, 42, 1410–1440. [Google Scholar] [CrossRef]
- Froyland, G.; Padberg, K. Almost-invariant sets and invariant manifolds – Connecting probabilistic and geometric descriptions of coherent structures in flows. Phys. D Nonlinear Phenom. 2009, 238, 1507–1523. [Google Scholar] [CrossRef]
- Grüne, L.; Sperl, M. Examples for separable control Lyapunov functions and their neural network approximation. IFAC-PapersOnLine 2023, 56, 19–24. [Google Scholar] [CrossRef]
- Computation of Bounds for Polynomial Dynamic Systems, Source Files. Available online: https://github.com/TUD-RST/computation-bounds-polynomial-systems (accessed on 1 November 2025).





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Röbenack, K.; Gerbet, D. Computation of Bounds for Polynomial Dynamic Systems. Algorithms 2025, 18, 785. https://doi.org/10.3390/a18120785
Röbenack K, Gerbet D. Computation of Bounds for Polynomial Dynamic Systems. Algorithms. 2025; 18(12):785. https://doi.org/10.3390/a18120785
Chicago/Turabian StyleRöbenack, Klaus, and Daniel Gerbet. 2025. "Computation of Bounds for Polynomial Dynamic Systems" Algorithms 18, no. 12: 785. https://doi.org/10.3390/a18120785
APA StyleRöbenack, K., & Gerbet, D. (2025). Computation of Bounds for Polynomial Dynamic Systems. Algorithms, 18(12), 785. https://doi.org/10.3390/a18120785

