Hybrid Geoid Modelling with AI Enhancements: A Case Study for Almaty, Kazakhstan
Abstract
1. Introduction
2. Study Area
3. Information Base, Required for Local Geoid Modelling
3.1. Gravity Data
3.2. GNSS/Levelling Data
4. Methods of the Local Geoid Modelling
- –
- truncation and spectral errors of gravity anomalies;
- –
- regularization of the poorly conditioned system for high-degree harmonics; and
- –
- additive corrections for topography, atmosphere, ellipsoidal effects, and downward continuation.
- (1)
- Root-Mean-Square Error (RMSE, primary).
- (2)
- Mean Absolute Error (MAE).
- (3)
- Bias (mean error).
- (4)
- Coefficient of determination ().
5. Results
5.1. Classical Geoid Modelling by LSMSA Method
5.2. GNSS/Levelling Data Preprocessing
5.3. Corrector Surface by AI
5.4. Hybrid Geoid (LSMSA + AI)
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elshewy, M.A.; Trung Thanh, P.; Elsheshtawy, A.M.; Refaat, M.; Freeshah, M. A Novel Approach for Optimizing Regional Geoid Modeling over Rugged Terrains Based on Global Geopotential Models and Artificial Intelligence Algorithms. Egypt. J. Remote Sens. Space Sci. 2024, 27, 656–668. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, X.; Guo, F.; Zheng, J.; Nan, Y.; Freeshah, M. TDS-1 GNSS Reflectometry Wind Geophysical Model Function Response to GPS Block Types. Geo-Spat. Inf. Sci. 2022, 25, 312–324. [Google Scholar] [CrossRef]
- Abbak, R.A.; Ustun, A. A Software Package for Computing a Regional Gravimetric Geoid Model by the KTH Method. Earth Sci. Inform. 2015, 8, 255–265. [Google Scholar] [CrossRef]
- Işık, M.S.; Erol, B.; Erol, S.; Sakil, F.F. High-Resolution Geoid Modeling Using Least Squares Modification of Stokes and Hotine Formulas in Colorado. J. Geod. 2021, 95, 49. [Google Scholar] [CrossRef]
- Yildiz, H.; Forsberg, R.; Ågren, J.; Tscherning, C.; Sjöberg, L. Comparison of Remove-Compute-Restore and Least Squares Modification of Stokes’ Formula Techniques to Quasi-Geoid Determination over the Auvergne Test Area. J. Geod. Sci. 2012, 2, 53–64. [Google Scholar] [CrossRef]
- Abbak, R.A.; Sjöberg, L.E.; Ellmann, A.; Ustun, A. A Precise Gravimetric Geoid Model in a Mountainous Area with Scarce Gravity Data: A Case Study in Central Turkey. Stud. Geophys. Geod. 2012, 56, 909–927. [Google Scholar] [CrossRef]
- Abdalla, A.; Fairhead, D. A New Gravimetric Geoid Model for Sudan Using the KTH Method. J. Afr. Earth Sci. 2011, 60, 213–221. [Google Scholar] [CrossRef]
- Abbak, R.A.; Erol, B.; Ustun, A. Comparison of the KTH and Remove–Compute–Restore Techniques to Geoid Modelling in a Mountainous Area. Comput. Geosci. 2012, 48, 31–40. [Google Scholar] [CrossRef]
- Ulotu, P. Geoid Model of Tanzania from Sparse and Varying Gravity Data Density by the KTH Method. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2009. [Google Scholar]
- Abdalla, A.; Mogren, S. Implementation of a Rigorous Least-Squares Modification of Stokes’ Formula to Compute a Gravimetric Geoid Model over Saudi Arabia (SAGEO13). Can. J. Earth Sci. 2015, 52, 823–832. [Google Scholar] [CrossRef]
- Zaletnyik, P.; Völgyesi, L.; Paláncz, B. Modelling Local GPS/Levelling Geoid Undulations Using Support Vector Machines. Period. Polytech. Civ. Eng. 2008, 52, 39–43. [Google Scholar] [CrossRef]
- Veronez, M.R.; Florêncio de Souza, S.; Matsuoka, M.T.; Reinhardt, A.; Macedônio da Silva, R. Regional Mapping of the Geoid Using GNSS (GPS) Measurements and an Artificial Neural Network. Remote Sens. 2011, 3, 668–683. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Zaki, A.; Al-Ajami, H.; Rabah, M. Optimizing Local Geoid Undulation Model Using GPS/Levelling Measurements and Heuristic Regression Approaches. Surv. Rev. 2020, 52, 544–554. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Pijush, S.; Rabah, M.; Al-Ajami, H.; Hu, J.W.; Zaki, A. Improving Accuracy of Local Geoid Model Using Machine Learning Approaches and Residuals of GPS/Levelling Geoid Height. Surv. Rev. 2022, 54, 505–518. [Google Scholar] [CrossRef]
- Ghaffari-Razin, S.R.; Hooshangi, N. Efficiency of Machine Learning Models in Estimation of Local Geoid Height with GPS/Leveling Measurements. Sci.-Res. Q. Geogr. Data SEPEHR 2024, 33, 99–117. [Google Scholar]
- Akar, A.; Konakoglu, B. Local Geoid Determination Using a Generalized Regression Neural Network and Interpolation Methods: A Case Study in Kars, Turkey. Erzincan Univ. J. Sci. Technol. 2020, 13, 1424–1438. [Google Scholar] [CrossRef]
- Konakoglu, B.; Akar, A. Geoid Undulation Prediction Using Gaussian Processes Regression: A Case Study in a Local Region in Turkey. Acta Geodyn. Geomater. 2021, 18, 15–28. [Google Scholar] [CrossRef]
- Konakoglu, B.; Akar, A. Prediction of Geoid Undulation Using Approaches Based on GMDH, M5 Model Tree, MARS, GPR, and IDP. Acta Geod. Geophys. 2022, 57, 293–315. [Google Scholar] [CrossRef]
- Pham, H.T.; Awange, J.; Claessens, S.; Kuhn, M. Local Hybrid Geoid/Quasigeoid Development Using Machine Learning with Consideration of Neighbour Spatial Characteristics. Surv. Rev. 2025, 1–33. [Google Scholar] [CrossRef]
- Zhanakulova, K.; Adebiyet, B.; Orynbassarova, E.; Yerzhankyzy, A.; Kassymkanova, K.-K.; Abdykalykova, R.; Zakariya, M. Application of Machine Learning Methods for Gravity Anomaly Prediction. Geosciences 2025, 15, 175. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Pang, Q.; Liu, S.; Li, S.; Shi, X.; Bian, S.; Wu, Y. Gravity Predictions in Data-Missing Areas Using Machine Learning Methods. Remote Sens. 2024, 16, 4173. [Google Scholar] [CrossRef]
- Butt, J.; Wieser, A.; Gojcic, Z.; Zhou, C. Machine Learning and Geodesy: A Survey. J. Appl. Geod. 2021, 15, 117–133. [Google Scholar] [CrossRef]
- Abdrakhmatov, K.Y.; Aldazhanov, S.; Hager, B.; Hamburger, M.; Herring, T.; Kalabaev, K.; Makarov, V.; Molnar, P.; Panasyuk, S.; Prilepin, M. Relatively Recent Construction of the Tien Shan Inferred from GPS Measurements of Present-Day Crustal Deformation Rates. Nature 1996, 384, 450–453. [Google Scholar] [CrossRef]
- Zubovich, A.V.; Wang, X.; Scherba, Y.G.; Schelochkov, G.G.; Reilinger, R.; Reigber, C.; Mosienko, O.I.; Molnar, P.; Michajljow, W.; Makarov, V.I. GPS Velocity Field for the Tien Shan and Surrounding Regions. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Grützner, C.; Walker, R.; Abdrakhmatov, K.; Mukambaev, A.; Elliott, A.; Elliott, J. Active Tectonics around Almaty and along the Zailisky Alatau Rangefront. Tectonics 2017, 36, 2192–2226. [Google Scholar] [CrossRef]
- Torizin, J.; Jentzsch, G.; Malischewsky, P.; Kley, J.; Abakanov, N.; Kurskeev, A. Rating of Seismicity and Reconstruction of the Fault Geometries in Northern Tien Shan within the Project “Seismic Hazard Assessment for Almaty”. J. Geodyn. 2009, 48, 269–278. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117. Erratum in J. Geophys. Res. Solid Earth 2013, 118. [Google Scholar] [CrossRef]
- Hirt, C.; Featherstone, W.; Marti, U. Combining EGM2008 and SRTM/DTM2006. 0 Residual Terrain Model Data to Improve Quasigeoid Computations in Mountainous Areas Devoid of Gravity Data. J. Geod. 2010, 84, 557–567. [Google Scholar] [CrossRef]
- Soycan, M. Improving EGM2008 by GPS and Leveling Data at Local Scale. Bol. Ciências Geodésicas 2014, 20, 3–18. [Google Scholar] [CrossRef]
- Alcantar-Elizondo, N.; Garcia-Lopez, R.V.; Torres-Carillo, X.G.; Vazquez-Becerra, G.E. Combining Global Geopotential Models, Digital Elevation Models, and Gnss/Leveling for Precise Local Geoid Determination in Some Mexico Urban Areas: Case Study. ISPRS Int. J. Geo-Inf. 2021, 10, 819. [Google Scholar] [CrossRef]
- Liang, W.; Li, J.; Xu, X.; Zhang, S.; Zhao, Y. A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering 2020, 6, 860–878. [Google Scholar] [CrossRef]
- Zingerle, P.; Pail, R.; Gruber, T.; Oikonomidou, X. The Combined Global Gravity Field Model XGM2019e. J. Geod. 2020, 94, 66. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Yan, B.; Yue, L.; Wang, L. Global DEMs Vary from One to Another: An Evaluation of Newly Released Copernicus, NASA and AW3D30 DEM on Selected Terrains of China Using ICESat-2 Altimetry Data. Int. J. Digit. Earth 2022, 15, 1149–1168. [Google Scholar] [CrossRef]
- Sermiagin, R.; Kemerbayev, N.; Kassymkanova, K.-K.; Kalen, E.; Mussina, G.; Shkiyeva, M.K.; Samarkhanov, K.; Batalova, A.; Rakhimzhanov, A.; Zhumakanov, A. A Historical Overview of Gravimetric Surveys in Kazakhstan. Geod. Cartogr. 2024, 1012, 53–64. [Google Scholar]
- Shoganbekova, D.; Urazaliyev, A.; Sermiagin, R.; Nurakynov, S.; Kozhakhmetov, M.; Zhaksygul, N.; Islyamova, A. Evaluation of a Soviet-Era Gravimetric Survey Using Absolute Gravity Measurements and Global Gravity Models: Toward the First National Geoid of Kazakhstan. Geosciences 2025, 15, 404. [Google Scholar] [CrossRef]
- Sermiagin, R. Dataset from Processing the 2023–2024 Campaigns to Establish Kazakhstan’s Gravity Reference Frame (QazGRF24); Zenodo: Geneva, Switzerland, 2025. [Google Scholar]
- Tazhedinov, D.; Islyamova, A.; Merkulov, M. Technical Report on the Results of the Mathematical Processing (Adjustment) of the Stations of the State First-Order Gravimetric Network. Project Code: K.04.00087.; RSE National Centre of Geodesy and Spatial Information: Astana, Kazakhstan, 2024. [Google Scholar]
- Sjöberg, L.E. A General Model for Modifying Stokes’ Formula and Its Least-Squares Solution. J. Geod. 2003, 77, 459–464. [Google Scholar] [CrossRef]
- Sjoberg, L.E.; Bagherbandi, M. Gravity Inversion and Integration: Theory and Applications in Geodesy and Geophysics; Royal Institute of Technology (KTH): Stockholm, Sweden, 2017. [Google Scholar]
- Moritz, H. Geodetic Reference System 1980. Bull. Géodésique 1992, 66, 187–192. [Google Scholar] [CrossRef]
- Duchnowski, R.; Wyszkowska, P. Robust Procedures in Processing Measurements in Geodesy and Surveying: A Review. Meas. Sci. Technol. 2024, 35, 052002. [Google Scholar] [CrossRef]
- Kargoll, B. Comparison of Some Robust Parameter Estimation Techniques for Outlier Analysis Applied to Simulated GOCE Mission Data; Springer: Berlin/Heidelberg, Germany, 2005; pp. 77–82. [Google Scholar]
- Jekeli, C.; Bastos, L.M.; Fernandes, J. Gravity, Geoid and Space Missions: GGSM 2004. IAG International Symposium. Porto, Portugal. 30 August–3 September 2004; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 129, ISBN 3-540-26932-0. [Google Scholar]
- Burzykowski, T.; Geubbelmans, M.; Rousseau, A.-J.; Valkenborg, D. Validation of Machine Learning Algorithms. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Arana, D.; Camargo, P.O.; Guimaraes, G.N. Hybrid Geoid Model: Theory and Application in Brazil. An. Acad. Bras. Ciências 2017, 89, 1943–1959. [Google Scholar] [CrossRef] [PubMed]
- Borghi, A.; Barzaghi, R.; Al-Bayari, O.; Al Madani, S. Centimeter Precision Geoid Model for Jeddah Region (Saudi Arabia). Remote Sens. 2020, 12, 2066. [Google Scholar] [CrossRef]
- Pa’suya, M.F.; Din, A.H.M.; Yusoff, M.Y.M.; Abbak, R.A.; Hamden, M.H. Refinement of Gravimetric Geoid Model by Incorporating Terrestrial, Marine, and Airborne Gravity Using KTH Method. Arab. J. Geosci. 2021, 14, 2003. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Saka, M. Modelling Local GPS/Levelling Geoid Undulations Using Artificial Neural Networks. J. Geod. 2005, 78, 520–527. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Rabah, M.; Hu, J.W.; Zaki, A. Using Advanced Soft Computing Techniques for Regional Shoreline Geoid Model Estimation and Evaluation. Mar. Georesour. Geotechnol. 2018, 36, 688–697. [Google Scholar] [CrossRef]












| C(0), mGal2 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 16 | 9 | 6 | 3 | 1 | ||||||
| Mmax | STD | RMSE | STD | RMSE | STD | RMSE | STD | RMSE | STD | RMSE |
| 760 | 0.279 | 0.474 | 0.231 | 0.382 | 0.197 | 0.337 | 0.153 | 0.273 | 0.111 | 0.195 |
| 630 | 0.217 | 0.348 | 0.182 | 0.313 | 0.161 | 0.284 | 0.131 | 0.241 | 0.102 | 0.182 |
| 500 | 0.126 | 0.194 | 0.109 | 0.179 | 0.099 | 0.168 | 0.087 | 0.140 | ||
| 400 | 0.094 | 0.144 | 0.083 | 0.103 | ||||||
| 300 | 0.079 | 0.095 | ||||||||
| 200 | 0.112 | 0.156 | ||||||||
| 180 | 0.121 | 0.219 | ||||||||
| Correction Type | Min | Max | Mean | STD |
|---|---|---|---|---|
| Topographic | −2.181 m | −0.025 m | −0.421 m | 0.534 m |
| DWC reduction | −0.255 m | 1.147 m | 0.042 m | 0.245 m |
| Ellipsoidal | −1.3 mm | 0.2 mm | −0.3 mm | 0.3 mm |
| Atmospheric | 0.5 mm | 4.8 mm | 1.7 mm | 1.2 mm |
| Sum of all corrections | −1.652 m | −0.020 m | −0.378 m | 0.331 m |
| Method | Split | N | Mean, m | Median, m | STD, m | RMS, m | MAE, m | IQR, m | MIN, m | MAX, m |
|---|---|---|---|---|---|---|---|---|---|---|
| BEFORE | ||||||||||
| None | ALL | 119 | −0.059 | −0.063 | 0.056 | 0.081 | 0.068 | 0.079 | −0.187 | 0.068 |
| TRAIN | 83 | −0.061 | −0.064 | 0.055 | 0.082 | 0.069 | 0.080 | −0.187 | 0.068 | |
| TEST | 36 | −0.053 | −0.057 | 0.059 | 0.079 | 0.066 | 0.084 | −0.186 | 0.058 | |
| AFTER | ||||||||||
| Helmert | ALL | 119 | 0.004 | 0.006 | 0.058 | 0.058 | 0.048 | 0.084 | −0.129 | 0.128 |
| TRAIN | 83 | 0.002 | 0.002 | 0.057 | 0.057 | 0.047 | 0.077 | −0.129 | 0.128 | |
| TEST | 36 | 0.010 | 0.010 | 0.070 | 0.072 | 0.059 | 0.102 | −0.135 | 0.129 | |
| GPR (ARD) | ALL | 119 | 0.001 | −0.001 | 0.043 | 0.043 | 0.034 | 0.060 | −0.099 | 0.107 |
| TRAIN | 83 | 0.000 | 0.000 | 0.042 | 0.042 | 0.033 | 0.060 | −0.099 | 0.095 | |
| TEST | 36 | 0.005 | −0.001 | 0.046 | 0.045 | 0.036 | 0.058 | −0.093 | 0.107 | |
| SVR (RBF) | ALL | 119 | 0.000 | −0.001 | 0.043 | 0.043 | 0.035 | 0.065 | −0.094 | 0.109 |
| TRAIN | 83 | −0.001 | −0.003 | 0.044 | 0.043 | 0.036 | 0.070 | −0.094 | 0.099 | |
| TEST | 36 | 0.003 | −0.004 | 0.042 | 0.040 | 0.034 | 0.056 | −0.055 | 0.101 | |
| LSBoost | ALL | 119 | 0.003 | 0.000 | 0.028 | 0.028 | 0.013 | 0.000 | −0.101 | 0.116 |
| TRAIN | 83 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| TEST | 36 | 0.010 | 0.021 | 0.051 | 0.051 | 0.042 | 0.064 | −0.101 | 0.116 | |
| Method | Protocol | RMSE, m | MAE, m | Bias, m | R2, - |
|---|---|---|---|---|---|
| GPR (ARD) | 0.048 | 0.039 | 0.002 | 0.267 | |
| SVR (RBF) | LOOCV | 0.044 | 0.035 | 0.000 | 0.380 |
| LSBoost | 0.057 | 0.045 | 0.001 | −0.047 | |
| GPR (ARD) | 0.049 | 0.039 | 0.003 | 0.246 | |
| SVR (RBF) | 10-fold | 0.046 | 0.036 | 0.001 | 0.343 |
| LSBoost | 0.060 | 0.047 | 0.003 | −0.150 | |
| GPR (ARD) | 0.063 | 0.052 | −0.014 | −0.260 | |
| SVR (RBF) | spatial CV | 0.056 | 0.044 | −0.002 | 0.020 |
| LSBoost | 0.100 | 0.086 | −0.023 | −2.195 |
| Method | Terrain Type | N | Mean, m | Median, m | STD, m | RMS, m | MAE, m | IQR, m | MIN, m | MAX, m |
|---|---|---|---|---|---|---|---|---|---|---|
| Helmert | Flat | 15 | 0.011 | 0.008 | 0.052 | 0.056 | 0.038 | 0.069 | −0.056 | 0.098 |
| Hilly | 15 | 0.032 | 0.028 | 0.065 | 0.070 | 0.061 | 0.111 | −0.065 | 0.119 | |
| Mountainous | 6 | −0.047 | −0.047 | 0.058 | 0.071 | 0.063 | 0.050 | −0.126 | 0.046 | |
| GPR (ARD) | Flat | 15 | 0.003 | 0.002 | 0.031 | 0.030 | 0.025 | 0.050 | −0.047 | 0.063 |
| Hilly | 15 | 0.021 | 0.026 | 0.055 | 0.057 | 0.049 | 0.072 | −0.057 | 0.107 | |
| Mountainous | 6 | −0.032 | −0.023 | 0.035 | 0.046 | 0.032 | 0.041 | −0.093 | −0.002 | |
| SVR (RBF) | Flat | 15 | −0.002 | −0.005 | 0.032 | 0.031 | 0.025 | 0.043 | −0.048 | 0.065 |
| Hilly | 15 | 0.019 | 0.026 | 0.052 | 0.054 | 0.046 | 0.067 | −0.053 | 0.109 | |
| Mountainous | 6 | −0.023 | −0.029 | 0.024 | 0.032 | 0.027 | 0.023 | −0.055 | 0.011 | |
| LSBoost | Flat | 15 | 0.002 | 0.017 | 0.047 | 0.046 | 0.039 | 0.068 | −0.092 | 0.077 |
| Hilly | 15 | 0.028 | 0.029 | 0.052 | 0.057 | 0.048 | 0.052 | −0.093 | 0.116 | |
| Mountainous | 6 | −0.014 | −0.013 | 0.051 | 0.048 | 0.037 | 0.045 | −0.101 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urazaliyev, A.; Shoganbekova, D.; Nurakynov, S.; Kozhakhmetov, M.; Zhaksygul, N.; Sermiagin, R. Hybrid Geoid Modelling with AI Enhancements: A Case Study for Almaty, Kazakhstan. Algorithms 2025, 18, 737. https://doi.org/10.3390/a18120737
Urazaliyev A, Shoganbekova D, Nurakynov S, Kozhakhmetov M, Zhaksygul N, Sermiagin R. Hybrid Geoid Modelling with AI Enhancements: A Case Study for Almaty, Kazakhstan. Algorithms. 2025; 18(12):737. https://doi.org/10.3390/a18120737
Chicago/Turabian StyleUrazaliyev, Asset, Daniya Shoganbekova, Serik Nurakynov, Magzhan Kozhakhmetov, Nailya Zhaksygul, and Roman Sermiagin. 2025. "Hybrid Geoid Modelling with AI Enhancements: A Case Study for Almaty, Kazakhstan" Algorithms 18, no. 12: 737. https://doi.org/10.3390/a18120737
APA StyleUrazaliyev, A., Shoganbekova, D., Nurakynov, S., Kozhakhmetov, M., Zhaksygul, N., & Sermiagin, R. (2025). Hybrid Geoid Modelling with AI Enhancements: A Case Study for Almaty, Kazakhstan. Algorithms, 18(12), 737. https://doi.org/10.3390/a18120737

