Bibliometric Mapping of Soil Chemicalization and Fertilizer Research: Environmental and Computational Insights
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Literature Overview
3.2. Global Scientific Productivity in Soil Chemicalization
3.3. Academic Influence and Impact of Journals
3.4. Institutional Leadership in Soil Chemicalization Research
3.5. Publication Citation Analysis
3.6. Mapping International Scientific Partnerships in the Field of Soil Chemicalization
3.7. Soil Chemicalization Trend Evolution
3.8. Temporal Dynamics of Research Trends
3.9. Keyword Co-Occurrence Analysis in Soil Chemicalization Research
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TLS | Total link strength |
| TF-IDF | Term frequency-inverse document frequency |
| WoS | Web of Science |
References
- Iqbal, S.; Riaz, U.; Murtaza, D.G.; Jamil, M.; Ahmad, M.; Hussain, A.; Abbas, Z. Chemical Fertilizers, Formulation, and Their Influence on Soil Health. In Microbiota and Biofertilizers; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–15. ISBN 978-3-030-48770-6. [Google Scholar]
- Samuel, A.D.; Brejea, R.; Domuta, C.; Bungau, S.; Cenusa, N.; Tit, D.M. Enzymatic Indicators of Soil Quality. J. Environ. Prot. Ecol. 2017, 18, 871–878. [Google Scholar]
- Biswas, D. A Textbook of Fertilizers; New India Publishing Agency: Delhi, India, 2021; ISBN 978-93-90512-80-5. [Google Scholar]
- He, J.-D.; Shu, B.; Wu, Q.-S. Mycorrhizosphere of Fruit Crops: Nature and Properties. In Fruit Crops Diagnosis and Management of Nutrient Constraints; Srivastava, A.K., Hu, C.B.T.-F.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 325–338. ISBN 978-0-12-818732-6. [Google Scholar]
- Bisane, M.; Chakravarty, I.; Mehetre, S.; Mukherjee, P.; Mandavgane, S.A. Biomass Ash as a Source of Nutrient; a Case Study on Cotton (Gossypium). In Fruit and Vegetable Waste Utilization and Sustainability; Mandavgane, S.A., Chakravarty, I., Jaiswal, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 301–308. ISBN 978-0-323-91743-8. [Google Scholar]
- Samuel, A.D.; Tit, D.M.; Melinte, C.E.; Iovan, C.; Purza, L.; Gitea, M.; Bungau, S. Enzymological and Physicochemical Evaluation of the Effects of Soil Management Practices. Rev. Chim. 2017, 68, 2243–2247. [Google Scholar] [CrossRef]
- Yan, Z.; Li, P.; Li, Z.; Zhang, N.; Zhao, C.; Cao, Y.; Zhang, M.; Wang, Y.; Zhao, X. Dynamic Response of Soil Enzyme Activities in Riparian Zones: Insights From Vegetation Cover. J. Soil Sci. Plant Nutr. 2025, 25, 1597–1611. [Google Scholar] [CrossRef]
- Li, X.; Su, L.; Jing, M.; Wang, K.; Song, C.; Song, Y. Nitrogen Addition Restricts Key Soil Ecological Enzymes and Nutrients by Reducing Microbial Abundance and Diversity. Sci. Rep. 2025, 15, 5560. [Google Scholar] [CrossRef]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the Impact of Anthropogenic Aspects and Climatic Factors on Long-Term Soil Monitoring and Management. Environ. Sci. Pollut. Res. 2021, 28, 30528–30550. [Google Scholar] [CrossRef]
- Shahid, M.; Akram, A.; Imtiaz, U.; Saba, D.; Kabir, R.; Hayat, U.; Haraira, A.; Ibrahim, M.; Khan, G.; Shahzaib, M. Review of recent advances in chemical fertilizers and their impact on crop productivity and sustainability section a-research paper. Eur. Chem. Bull 2024, 13, 62–71. [Google Scholar]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. ISBN 978-3-030-61010-4. [Google Scholar]
- Reeves, D.W. The Role of Soil Organic Matter in Maintaining Soil Quality in Continuous Cropping Systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Parker, D.R.; Clarke, J.M. Metals and Micronutrients—Food Safety Issues. Field Crop. Res. 1999, 60, 143–163. [Google Scholar] [CrossRef]
- Skopp, J.; Jawson, M.D.; Doran, J.W. Steady-State Aerobic Microbial Activity as a Function of Soil Water Content. Soil Sci. Soc. Am. J. 1990, 54, 1619–1625. [Google Scholar] [CrossRef]
- García-Gil, J.C.; Plaza, C.; Soler-Rovira, P.; Polo, A. Long-Term Effects of Municipal Solid Waste Compost Application on Soil Enzyme Activities and Microbial Biomass. Soil Biol. Biochem. 2000, 32, 1907–1913. [Google Scholar] [CrossRef]
- Edwards, R.; Dixon, D.P.; Walbot, V. Plant Glutathione S-Transferases: Enzymes with Multiple Functions in Sickness and in Health. Trends Plant Sci. 2000, 5, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Spain, J.C. Biodegradation of Nitroaromatic Compounds. Annu. Rev. Microbiol. 1995, 49, 523–555. [Google Scholar] [CrossRef]
- Hou, R.; Zhang, J.; Fu, Q.; Li, T.; Gao, S.; Wang, R.; Zhao, S.; Zhu, B. The Boom Era of Emerging Contaminants: A Review of Remediating Agricultural Soils by Biochar. Sci. Total Environ. 2024, 931, 172899. [Google Scholar] [CrossRef]
- Ghazaryan, K.; Agrawal, S.; Margaryan, G.; Harutyunyan, A.; Rajput, P.; Movsesyan, H.; Rajput, V.D.; Singh, R.K.; Minkina, T.; Elshikh, M.S.; et al. Soil Pollution: An Agricultural and Environmental Problem with Nanotechnological Remediation Opportunities and Challenges. Discov. Sustain. 2024, 5, 453. [Google Scholar] [CrossRef]
- Maddela, N.R.; Ramakrishnan, B.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M. Major Contaminants of Emerging Concern in Soils: A Perspective on Potential Health Risks. RSC Adv. 2022, 12, 12396–12415. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Fu, R.; Nie, F.; Zuo, W.; Tian, Y.; Zhang, J. Full-Chain Analysis on Emerging Contaminants in Soil: Source, Migration and Remediation. Chemosphere 2024, 363, 142854. [Google Scholar] [CrossRef]
- Ge, G.; Chen, X.; Ma, H.; Zhang, X.; Shi, J.; Wang, X.; Zhao, X.; Wang, M.; Xian, F.; Lu, Z.; et al. Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Components from 2000 to 2023. Front. Plant Sci. 2024, 15, 1457826. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil Erosion Modelling: A Bibliometric Analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T.; Shaikh, W.A.; Roy, A.; Chakraborty, S.; Vithanage, M.; Biswas, J.K. Multifaceted Applications of Biochar in Environmental Management: A Bibliometric Profile. Biochar 2023, 5, 11. [Google Scholar] [CrossRef]
- Wu, P.; Singh, B.P.; Wang, H.; Jia, Z.; Wang, Y.; Chen, W. Bibliometric Analysis of Biochar Research in 2021: A Critical Review for Development, Hotspots and Trend Directions. Biochar 2023, 5, 6. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, F.; Zhang, H.; Duan, Y.; Luo, J.; Sun, X.; Wang, M.; Ye, D.; Wang, M.; Zhu, Z.; et al. Trends in Phytoremediation of Heavy Metals-Contaminated Soils: A Web of Science and CiteSpace Bibliometric Analysis. Chemosphere 2024, 352, 141293. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Wang, W.; Zvomuya, F.; He, H. Trends in Soil Science over the Past Three Decades (1992–2022) Based on the Scientometric Analysis of 39 Soil Science Journals. Agriculture 2024, 14, 445. [Google Scholar] [CrossRef]
- Chiranjeevi, V.; Singh, K. Bibliometric Analysis in Soil Stabilization Research: A Focus on Dust Particles and Calcium Lignosulphanate. Natl. Acad. Sci. Lett. 2024, 48, 479–486. [Google Scholar] [CrossRef]
- Silva, C.d.O.F.; Manzione, R.L.; Oliveira, S.R.d.M. Exploring 20-Year Applications of Geostatistics in Precision Agriculture in Brazil: What’s next? Precis. Agric. 2023, 24, 2293–2326. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in Agriculture: A Review and Bibliometric Analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Jamal, A.; Elango, B.; Joseph, M.K. A Bibliometric Analysis of Sustainability Transitions in Agrifood Systems. Cogent Soc. Sci. 2025, 11, 2556226. [Google Scholar] [CrossRef]
- Botero-Valencia, J.; García-Pineda, V.; Valencia-Arias, A.; Valencia, J.; Reyes-Vera, E.; Mejia-Herrera, M.; Hernández-García, R. Machine Learning in Sustainable Agriculture: Systematic Review and Research Perspectives. Agriculture 2025, 15, 377. [Google Scholar] [CrossRef]
- VOSviewer 1.6.20. Available online: https://www.vosviewer.com/download (accessed on 10 March 2025).
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- RStudio Team. 2020. Available online: https://posit.co/ (accessed on 15 July 2025).
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- World Population Prospects. United Nations. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 25 September 2025).
- Pons, P.; Latapy, M. Computing Communities in Large Networks Using Random Walks. Available online: https://arxiv.org/abs/physics/0512106 (accessed on 20 August 2025).
- Awais, M.; Naqvi, S.M.Z.A.; Zhang, H.; Li, L.; Zhang, W.; Awwad, F.A.; Ismail, E.A.A.; Khan, M.I.; Raghavan, V.; Hu, J. AI and Machine Learning for Soil Analysis: An Assessment of Sustainable Agricultural Practices. Bioresour. Bioprocess. 2023, 10, 90. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in Agriculture—A Systematic Review of 26 Global Meta-Analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The Relevance of Sustainable Soil Management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Beiyuan, J.; Gupta, S.; Hou, D.; Karakoti, A.; Joseph, S.; Jung, S.; Kim, K.H.; Kirkham, M.B.; et al. Multifunctional Applications of Biochar beyond Carbon Storage. Int. Mater. Rev. 2022, 67, 150–200. [Google Scholar] [CrossRef]
- Qu, C.; Shi, W.; Guo, J.; Fang, B.; Wang, S.; Giesy, J.P.; Holm, P.E. China’s Soil Pollution Control: Choices and Challenges. Environ. Sci. Technol. 2016, 50, 13181–13183. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, Y.; Lin, S.; Liu, Y.; Xie, Y. Soil Pollution Management in China: A Brief Introduction. Sustainability 2019, 11, 556. [Google Scholar] [CrossRef]
- Fan, D.; Yang, F. Assessing the Impact of China’s Agricultural Subsidy Reform on Fertilizer Management: A County-Level Empirical Analysis Based on Difference-in-Difference Model. Front. Sustain. Food Syst. 2023, 7, 1298425. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular Biomarkers of Oxidative Stress in Aquatic Organisms in Relation to Toxic Environmental Pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic Mulching in Agriculture. Trading Short-Term Agronomic Benefits for Long-Term Soil Degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide Residues in European Agricultural Soils—A Hidden Reality Unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef]
- Durán, N.; Esposito, E. Potential Applications of Oxidative Enzymes and Phenoloxidase-like Compounds in Wastewater and Soil Treatment: A Review. Appl. Catal. B Environ. 2000, 28, 83–99. [Google Scholar] [CrossRef]
- Singh, B.K.; Walker, A. Microbial Degradation of Organophosphorus Compounds. FEMS Microbiol. Rev. 2006, 30, 428–471. [Google Scholar] [CrossRef]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors. RSC Adv. 2019, 9, 8778–8881. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.J.; Zhang, F. Improving Crop Productivity and Resource Use Efficiency to Ensure Food Security and Environmental Quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]











| Category | Focus | Terms | Example Keywords |
|---|---|---|---|
| A. Chemicalization | Agricultural chemical inputs and management | 13 | Chemicalization OR “soil chemicalization” OR “chemical fertiliz*” OR “agrochemical*” OR “soil treatment*” OR “soil amendment*” OR “soil management” OR “agricultural chemical*” OR “chemical input*” OR pesticid* OR herbicid* OR “mineral fertiliz*” OR “organic fertiliz*” |
| B. Biological Indicators | Soil enzymatic and microbial activity | 19 | enzym* OR “soil enzym*” OR “enzymatic” OR “enzyme activity” OR “biological activity” OR “soil biology” OR “soil biochemistry” OR “microbial activity” OR dehydrogenase OR phosphatase OR catalase OR “soil quality” OR “soil health” OR “soil degradation” OR “agricultural impact*” OR “environmental stress” OR “soil pollution” OR “soil contamination” OR “abiotic stress” |
| C. Climate | Climate change and related factors | 11 | “climate change*” OR “global warming” OR “climate warming” OR “greenhouse effect*” OR “climate impact*” OR “climatic factor*” OR “temperature change*” OR “precipitation change*” OR “drought stress” OR “weather extreme*” OR “climate extreme*” |
| D. Pollution | Environmental and soil contamination | 11 | “environmental pollution” OR “soil pollution” OR “agricultural pollution” OR “chemical pollution” OR “heavy metal*” OR “toxic substance*” OR “pollutant*” OR “contamina*” OR “xenobiotic*” OR “ecological damage” OR “environmental degradation” |
| E. Environmental Impact | Anthropogenic effects and assessment | 10 | “environmental impact*” OR “anthropogenic impact*” OR “human impact*” OR “environmental stress*” OR “environmental pressure*” OR “environmental risk*” OR “ecological impact*” OR “ecosystem change*” OR “environmental quality” OR “environmental assessment” |
| Country | Documents | Citations | Average Citations/Document | Docs/Million Population | TLS |
|---|---|---|---|---|---|
| China | 1977 | 62,597 | 31.66 | 1.40 | 1168 |
| USA | 1276 | 66,516 | 52.13 | 3.75 | 1050 |
| India | 1067 | 33,950 | 31.82 | 0.74 | 673 |
| Spain | 488 | 17,073 | 34.99 | 10.00 | 414 |
| Germany | 486 | 26,287 | 54.09 | 5.82 | 692 |
| Brazil | 469 | 12,941 | 27.59 | 2.21 | 265 |
| France | 447 | 20,892 | 46.74 | 6.52 | 474 |
| Italy | 442 | 17,900 | 40.50 | 7.49 | 411 |
| Pakistan | 311 | 12,003 | 38.59 | 1.24 | 520 |
| Australia | 290 | 18,790 | 64.79 | 10.66 | 490 |
| Source | h_Index | g_Index | m_Index | Total Citations | Publications | Publication Start |
|---|---|---|---|---|---|---|
| SCIENCE OF THE TOTAL ENVIRONMENT | 63 | 108 | 1.8 | 14,756 | 322 | 1991 |
| CHEMOSPHERE | 59 | 94 | 1.788 | 11,563 | 240 | 1993 |
| ENVIRONMENTAL POLLUTION | 50 | 77 | 1.282 | 7615 | 185 | 1987 |
| ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY | 49 | 82 | 1.633 | 8411 | 198 | 1996 |
| ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH | 42 | 80 | 1.448 | 8525 | 264 | 1997 |
| JOURNAL OF ENVIRONMENTAL MANAGEMENT | 35 | 65 | 1.667 | 4459 | 96 | 2005 |
| JOURNAL OF HAZARDOUS MATERIALS | 33 | 52 | 1.737 | 3075 | 98 | 2007 |
| AQUATIC TOXICOLOGY | 33 | 72 | 0.943 | 5292 | 89 | 1991 |
| PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY | 26 | 39 | 0.531 | 1891 | 100 | 1977 |
| AGRONOMY-BASEL | 21 | 40 | 1.615 | 1862 | 112 | 2013 |
| Paper/Source | TC | TC/Year | Normalized TC | DOI |
|---|---|---|---|---|
| LEHMANN J, 2011, SOIL BIOL BIOCHEM | 3408 | 227.20 | 49.82 | 10.1016/j.soilbio.2011.04.022 |
| BLOKHINA O, 2003, ANN BOT | 2884 | 125.39 | 28.26 | 10.1093/aob/mcf118 |
| LUSHCHAK VI, 2011, AQUAT TOXICOL | 1883 | 125.53 | 27.53 | 10.1016/j.aquatox.2010.10.006 |
| VALAVANIDIS A, 2006, ECOTOX ENVIRON SAFE | 1352 | 67.60 | 16.64 | 10.1016/j.ecoenv.2005.03.013 |
| RIVETT MO, 2008, WATER RES | 1085 | 60.28 | 19.03 | 10.1016/j.watres.2008.07.020 |
| DIACONO M, 2010, AGRON SUSTAIN DEV | 1059 | 66.19 | 19.60 | 10.1051/agro/2009040 |
| STEINMETZ Z, 2016, SCI TOTAL ENVIRON | 1000 | 100.00 | 25.39 | 10.1016/j.scitotenv.2016.01.153 |
| BACKER R, 2018, FRONT PLANT SCI | 967 | 120.88 | 24.15 | 10.3389/fpls.2018.01473 |
| REEVES DW, 1997, SOIL TILLAGE RES | 869 | 29.97 | 14.61 | 10.1016/S0167-1987(97)00038-X |
| ALENGEBAWY A, 2021, TOXICS | 858 | 171.60 | 28.19 | 10.3390/toxics9030042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bungau, G.S.; Radu, A.-F.; Radu, A.; Tit, D.M.; Negru, P.A. Bibliometric Mapping of Soil Chemicalization and Fertilizer Research: Environmental and Computational Insights. Algorithms 2025, 18, 660. https://doi.org/10.3390/a18100660
Bungau GS, Radu A-F, Radu A, Tit DM, Negru PA. Bibliometric Mapping of Soil Chemicalization and Fertilizer Research: Environmental and Computational Insights. Algorithms. 2025; 18(10):660. https://doi.org/10.3390/a18100660
Chicago/Turabian StyleBungau, Gabriela S., Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit, and Paul Andrei Negru. 2025. "Bibliometric Mapping of Soil Chemicalization and Fertilizer Research: Environmental and Computational Insights" Algorithms 18, no. 10: 660. https://doi.org/10.3390/a18100660
APA StyleBungau, G. S., Radu, A.-F., Radu, A., Tit, D. M., & Negru, P. A. (2025). Bibliometric Mapping of Soil Chemicalization and Fertilizer Research: Environmental and Computational Insights. Algorithms, 18(10), 660. https://doi.org/10.3390/a18100660

