Embedded Sensing in Additive Manufacturing Metal and Polymer Parts: A Comparative Study of Integration Techniques and Structural Health Monitoring Performance
Abstract
1. Introduction
2. Theoretical Background
2.1. Structural Health Monitoring Fundamentals
2.2. Additive Manufacturing for Sensor Integration
2.3. Piezoelectric Transducers (PZTs)
2.4. Wave Propagation and Damage Detection Techniques
2.5. Signal-Processing Techniques
2.6. Convolutional Neural Networks (CNNs) for SHM
Deep Learning Model
2.7. SuRE Method
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, A.; Yuan, X.; Li, Z.; Yang, J.; Ren, K.; Dong, S. 3D-printed flexible, multilayered ceramic-polymer composite grid with integrated structural-self-sensing function. Sens. Actuators A Phys. 2021, 332, 113187. [Google Scholar] [CrossRef]
- Munasinghe, N.; Woods, M.; Miles, L.; Paul, G. 3D Printed Strain Sensor for Structural Health Monitoring. In Proceedings of the 2019 IEEE International Conference Cybernetics and Intelligent Systems (CIS) & Robotics, Automation and Mechatronics (RAM), Bangkok, Thailand, 18–20 November 2019. [Google Scholar]
- Ahmed, S.; Bodaghi, M.; Nauman, S.; Khan, Z.M. Additive Manufacturing of Flexible Strain Sensors Based on Smart Composites for Structural Health Monitoring with High Accuracy and Fidelity. Adv. Eng. Mater. 2023, 25, 2300763. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, X.; Jia, S.; Jin, Y.; Xu, S.; Chen, J. High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors. J. Power Sources 2019, 433, 226692. [Google Scholar] [CrossRef]
- Balaji, R.; Sasikumar, M. Structural Health Monitoring (SHM) System for Polymer Composites: A Review. Indian J. Sci. Technol. 2016, 9, 85832. [Google Scholar] [CrossRef]
- Zhang, Y.; Anderson, N.; Bland, S.; Nutt, S.; Jursich, G. All-printed strain sensors: Building blocks of the aircraft structural health monitoring system. Sens. Actuators A Phys. 2017, 253, 165–172. [Google Scholar]
- Selleri, G.; Gino, M.E.; Brugo, T.M.; D’ANniballe, R.; Tabucol, J.; Focarete, M.L.; Carloni, R.; Fabiani, D.; Zucchelli, A. Self-sensing composite material based on piezoelectric nanofibers. Mater. Des. 2022, 219, 110787. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Jasiuniene, E. Structural Health Monitoring Damage Detection Systems for Aerospace; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Pasquale, G.P.E. Thermal monitoring of braking systems using metal AM calipers with integrated sensors. In ECCOMAS Proceedia; ECCOMAS: Barcelona, Spain, 2023. [Google Scholar]
- Hyer, H.C.; Sweeney, D.C.; Petrie, C.M. Functional fiber-optic sensors embedded in stainless steel components using ultrasonic additive manufacturing for distributed temperature and strain measurements. Addit. Manuf. 2022, 52, 102681. [Google Scholar] [CrossRef]
- Monu, M.C.; Chekotu, J.C.; Brabazon, D. Eddy current testing and monitoring in metal additive manufacturing: A review. J. Manuf. Process. 2025, 134, 558–588. [Google Scholar] [CrossRef]
- Turk, T.; E Dominguez, C.; Sutton, A.T.; Bernardin, J.D.; Park, J.; Leu, M.C. In situ embedding of resistance temperature detectors with the use of laser-foil-printing additive manufacturing. Smart Mater. Struct. 2024, 34, 15033. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Zhang, J.; Zhao, R.; Wang, Y.; Cao, H.; Liu, J. Design and Experiment of a Hybrid-Integrated Ultrahigh-g Accelerometer with Variable-Section Beam. IEEE Trans. Instrum. Meas. 2023, 72, 2003811. [Google Scholar] [CrossRef]
- Sakalys, R.; O’Hara, C.; Kariminejad, M.; Weinert, A.; Kadivar, M.; Zluhan, B.; McAfee, M.; McGranaghan, G.; Tormey, D.; Raghavendra, R. Embedding a surface acoustic wave sensor and venting into a metal additively manufactured injection mould tool for targeted temperature monitoring. Int. J. Adv. Manuf. Technol. 2024, 130, 5627–5640. [Google Scholar] [CrossRef]
- Chen, L.; Bi, G.; Yao, X.; Tan, C.; Su, J.; Ph Huat Ng, N.; Chew, Y.; Liu, K.; Moon, S.K. Multisensor fusion-based digital twin for localized quality prediction in robotic laser-directed energy deposition. Robot. Comput.-Integr. Manuf. 2023, 84, 102581. [Google Scholar] [CrossRef]
- Stajano, F.; Hoult, N.; Wassell, I.; Bennett, P.; Middleton, C.; Soga, K. Smart Bridges, Smart Tunnels: Transforming Wireless Sensor Networks from Research Prototypes into Robust Engineering Infrastructure. Ad Hoc Netw. 2010, 8, 872–888. [Google Scholar] [CrossRef]
- Romer, K.; Mattern, F. The design space of wireless sensor networks. IEEE Wirel. Commun. 2004, 11, 54–61. [Google Scholar] [CrossRef]
- Gumiel, J.A.; Mabe, J.; Burguera, F.; Jimenez, J.; Barruetabena, J. Next-Generation Pedal: Integration of Sensors in a Braking Pedal for a Full Brake-by Wire System. Sensors 2023, 23, 6345. [Google Scholar] [CrossRef]
- Bappy, O.; Jiang, Q.; Atampugre, S.; Zhang, Y. Aerosol Jet Printing of High-Temperature Bimodal Sensors for Simultaneous Strain and Temperature Sensing Using Gold and Indium Tin Oxide Nanoparticle Inks. ACS Appl. Nano Mater. 2024, 7, 9453–9459. [Google Scholar] [CrossRef]
- Ding, S.; Yang, C.; Zhang, S. Acoustic-signal-based damage detection of wind turbine blades—A review. Sensors 2023, 23, 4987. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Liu, Z. Fatigue performance and monitoring of diaphragm cutout details in steel bridges. In Proceedings of the 9th International Conference on Bridge Maintenance, Safety and Management, Melbourne, Australia, 9–13 July 2018; pp. 1–10. [Google Scholar]
- Paek, W.; Balasubramanian, S.; Stupples, D. Composites additive manufacturing for space applications: A review. Materials 2022, 15, 4709. [Google Scholar] [CrossRef]
- Dutta, C.; Kumar, J.; Das, T.K.; Sagar, S.P. Recent advancements in the development of sensors for the structural health monitoring (SHM) at high temperature environment: A review. IEEE Sens. J. 2021, 21, 15904–15915. [Google Scholar] [CrossRef]
- Martinotto, L.; Merlo, F.; Donzelli, D. Method for Manufacturing a Braking Element with Integrated Sensor, in Particular a Brake Pad, Brake Pad with Integrated Sensor, Vehicle Braking System and Associated. Method. Patent 9415757, 16 August 2016. [Google Scholar]
- Hehr, A.; Norfolk, M.; Wenning, J.; Sheridan, J.; Leser, P.; Leser, P.; Newman, J.A. Integrating fiber optic strain sensors into metal using ultrasonic additive manufacturing. JOM 2018, 70, 315–320. [Google Scholar] [CrossRef]
- Brown, T.G. Harsh military environments and microelectromechanical (MEMS) devices. In Proceedings of the Sensors, 2003 IEEE, Toronto, ON, Canada, 22–24 October 2003; Volume 2, pp. 753–760. [Google Scholar]
- Yang, T.; Mazumder, S.; Jin, Y.; Squires, B.; Sofield, M.; Pantawane, M.V.; Dahotre, N.B.; Neogi, A. A review of diagnostics methodologies for metal additive manufacturing processes and products. Materials 2021, 14, 4929. [Google Scholar] [CrossRef]
- Stone, J.V. The Fourier Transform: A Tutorial Introduction; Sebtel Press: Sheffield, UK, 2009. [Google Scholar]
- Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Debnath, L.; Shah, F.A. Wavelet Transforms and Their Applications, 2nd ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Akujuobi, C.M. Wavelets and Wavelet Transform Systems and Their Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Cheng, J.; Zou, Q.; Zhao, Y. ECG Signal Classification Based on Deep CNN and BiLSTM. BMC Med. Inform. Decis. Mak. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, S.; Kwak, I.Y. CNN-Based Acoustic Scene Classification System. Electronics 2021, 10, 371. [Google Scholar] [CrossRef]
- Byfield, R.; Shabaka, A.; Vargas, M.M.; Tansel, I. Inspection of Additively Manufactured Structures Using Combined Nondestructive Testing (NDT) and Structural Health Monitoring (SHM). J. Vib. Eng. Technol. 2025, 13, 362. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lee, C.H. Deep Learning Approach for Vibration Signals Applications. Sensors 2021, 21, 3929. [Google Scholar] [CrossRef]
- Rajwal, S.; Aggarwal, S. Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review. Arch. Comput. Methods Eng. 2023, 30, 3585–3615. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, S.; Zhang, Y. Classification of Heart Sounds Based on the Combination of the Modified Frequency Wavelet Transform and Convolutional Neural Network. Med. Biol. Eng. Comput. 2020, 58, 2039–2047. [Google Scholar] [CrossRef]
- Modir, A.; Tansel, I. Analysis of Force Sensing Accuracy by Using SHM Methods on Conventionally Manufactured and Additively Manufactured Small Polymer Parts. Polymers 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Modir, A.; Tansel, I.N. Implementation of the surface thickness on additively manufactured parts for estimation of the loading location. Smart Mater. Struct. 2021, 30, 25032. [Google Scholar] [CrossRef]
- Worden, K.; Dulieu-Barton, J.M. An overview of intelligent fault detection in systems and structures. Struct. Health Monit. 2004, 3, 85–98. [Google Scholar] [CrossRef]
- Worden, K.; Farrar, C.R. An introduction to structural health monitoring. Philos. Trans. R. Soc. A 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Farrar, C.R.; Doebling, S.W.; Nix, D.A. Vibration-based structural damage identification. Philos. Trans. R. Soc. A 2001, 359, 131–149. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B. A summary review of vibration-based damage identification methods. Shock Vib. Dig. 1998, 30, 91–105. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W. Structural health monitoring of civil infrastructure. Philos. Tranacctions R. Soc. A 2007, 365, 589–622. [Google Scholar] [CrossRef]
- Fassois, S.D.; Sakellariou, J.S. Time-series methods for fault detection and identification in vibrating structures. Philos. Trans. R. Soc. A 2007, 365, 411–448. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Robertson, A.N. Time-frequency and time-scale analyses for structural health monitoring. Philos. Trans. R. Soc. A 2007, 365, 449–477. [Google Scholar] [CrossRef]
- Sohn, H. Effects of environmental and operational variability on structural health monitoring. Philos. Trans. R. Soc. A 2007, 365, 539–560. [Google Scholar] [CrossRef]
- Farrar, C.R.; Duffey, T.A.; Doebling, S.W.; Nix, D.A. A statistical pattern recognition paradigm for vibration-based structural health monitoring. Struct. Health Monit. 1999, 2000, 764–773. [Google Scholar]
- Mathew, J.; Hauser, C.; Stoll, P.; Kenel, C.; Polyzos, D.; Havermann, D.; MacPherson, W.N.; Hand, D.P.; Leinenbach, C.; Spierings, A.; et al. Integrating Fiber Fabry-Perot Cavity Sensor Into 3-D Printed Metal Components for Extreme High-Temperature Monitoring Applications. IEEE Sens. J. 2017, 17, 4107–4114. [Google Scholar] [CrossRef]
- Stoll, P.; Gasparin, E.; Spierings, A.; Wegener, K. Embedding Eddy Current Sensors into LPBF Components for Structural Health Monitoring. Prog. Addit. Manuf. 2021, 6, 445–453. [Google Scholar] [CrossRef]
- Lehmhus, D.; Aumund-Kopp, C.; Petzoldt, F.; Godlinski, D.; Haberkorn, A.; Zollmer, V.; Busse, M. Sensor and Electronics Integration in Additive Manufacturing. In Material-Integrated Intelligent Systems: Technology and Applications; Wiley-VCH: Weinheim, Germany, 2017; pp. 217–256. [Google Scholar]
- Zhao, B.; Dong, W.; Hinds, K.; Li, J.; Alnbari, R.; Henry, R. Ultrasonic Additive Manufacturing of Fiber Bragg Grating Sensors with Thermal and Chemical Protection for Hostile Environments. IEEE Sens. J. 2024, 24, 2853–2862. [Google Scholar] [CrossRef]
- Kosir, T.; Slavic, J. Manufacturing of Single-Process 3D-Printed Piezoelectric Sensors with Electromagnetic Protection Using Thermoplastic Material Extrusion. Addit. Manuf. 2023, 73, 103699. [Google Scholar]
- Kosir, T.; Slavic, J. Modeling of Single-Process 3D-Printed Piezoelectric Sensors with Resistive Electrodes: The Low-Pass Filtering Effect. Polymers 2022, 15, 158. [Google Scholar] [CrossRef]
- Hassan, S.; Zaman, S.; Dantzler, J.Z.R.; Leyva, D.H.; Mahmud, S.; Ramirez, J.M.; Gomez, S.G.; Lin, Y. 3D Printed Integrated Sensors: From Fabrication to Applications—A Review. Nanomaterials 2023, 13, 3148. [Google Scholar] [CrossRef]
- Stoll, P.; Mathew, J.; Spierings, A.; Bauer, T.; Maier, R.R.J.; Wegener, K. Embedding Fibre Optical Sensors into SLM Parts. In Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 8–10 August 2016. [Google Scholar]
- Jiang, P.; Liu, X.; Chen, X.; He, S.; Wang, Y.; Chen, X.; Zhang, X.; Zhou, G. Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Adv. Mater. Technol. 2023, 8, 2200492. [Google Scholar]
- Maier, R.R.J.; Havermann, D.; MacPherson, W.N.; Hand, D.P. Embedding Metallic Jacketed Fused Silica Fibres into Stainless Steel Using Additive Layer Manufacturing Technology. In Proceedings of the Fifth European Workshop on Optical Fibre Sensors (EWOFS 2013), Krakow, Poland, 19–22 May 2013. [Google Scholar]
- Janas, V.F.; Safari, A. Overview of Fine-Scale Piezoelectric Ceramic/Polymer Composites for Acoustic Transducers. J. Am. Ceram. Soc. 1995, 78, 2945–2955. [Google Scholar] [CrossRef]
- Wersing, W. Composite Piezoelectrics for Ultrasonic Transducers. In Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (ISAF), Bethlehem, PA, USA, 8–11 June 1986. [Google Scholar]
- Krimholtz, M.; Leedom, D.A.; Matthaei, G.L. New equivalent circuits for elementary piezoelectric transducers. Electron. Lett. 1970, 6, 398–399. [Google Scholar] [CrossRef]
- Bloomfield, P.E.; Lo, W.J.; Lewin, P.A. Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 1397–1405. [Google Scholar]
- Zhou, Q.; Lau, S.; Wu, D.; Shung, K.K. Piezoelectric films for high-frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 2011, 56, 139–174. [Google Scholar]
- Sinclair, A.N.; Chertov, A.M. Radiation endurance of piezoelectric ultrasonic transducers—A review. Ultrasonics 2015, 57, 1–10. [Google Scholar]
- Shung, K.K.; Cannata, J.M.; Zhou, Q. Piezoelectric materials for high-frequency medical imaging applications: A review. J. Electroceramics 2007, 19, 141–147. [Google Scholar] [CrossRef]
- Lethiecq, M.; Levassort, F.; Certon, D.; Tran-Huu-Hue, L. Piezoelectric Transducer Design for Medical Diagnosis and NDE. In Piezoelectric and Acoustic Materials for Transducer Applications; Springer: Boston, MA, USA, 2008; pp. 191–215. [Google Scholar]
- Lee, W.; Roh, Y. Ultrasonic transducers for medical diagnostic imaging. Biomed. Eng. Lett. 2017, 7, 91–97. [Google Scholar] [CrossRef]
- Foster, F.; Harasiewicz, K.; Sherar, M.D. A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 1363–1371. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Cawley, P. Guided waves in long-range nondestructive testing and structural health monitoring: A review. Ultrasonics 2024, 142, 106834. [Google Scholar]
- Rose, J.L. A baseline and vision of ultrasonic guided wave inspection potential. J. Press. Vessel Technol. 2002, 124, 273–282. [Google Scholar] [CrossRef]
- Zhao, X.; Royer, R.L.; Owens, S.E.; Rose, J.L. Ultrasonic Lamb wave tomography in structural health monitoring. Smart Mater. Struct. 2011, 20, 105002. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L. Fundamentals and Analysis of Lamb Waves. In Identification of Damage Using Lamb Waves; Springer: London, UK, 2009; pp. 15–58. [Google Scholar]
- Stepinski, T.; Martowicz, A.; Manka, M. Interdigital transducers in structural health monitoring based on Lamb waves—A state of the art. NDT E Int. 2016, 78, 199–213. [Google Scholar]
- Alleyne, D.N.; Cawley, P. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. J. Nondestruct. Eval. 1996, 15, 11–20. [Google Scholar] [CrossRef]
- Croxford, A.J.; Wilcox, P.D.; Drinkwater, B.W.; Konstantinidis, G. Strategies for guided-wave structural health monitoring. Proc. R. Soc. A 2007, 463, 2961–2981. [Google Scholar] [CrossRef]
- Wilcox, P.D.; Konstantinidis, G.; Croxford, A.J.; Drinkwater, B.W. Strategies for guided wave structural health monitoring. In Review of Progress in Quantitative Nondestructive Evaluation; American Institute of Physics: New York, NY, USA, 2006. [Google Scholar]
- Raghavan, A.; Cesnik, C.E.S. Review of guided-wave structural health monitoring. Shock Vib. Dig. 2007, 39, 91–114. [Google Scholar] [CrossRef]
- Wang, B.-C. Digital Signal Processing Techniques and Applications in Radar Image Processing; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Debnath, L. Time-frequency analysis. In Wavelets and Signal Processing; Birkhäuser: Boston, MA, USA, 2003; p. 435. [Google Scholar]
- Zhong, J.; Huang, Y. Time-Frequency Representation Based on an Adaptive Short-Time Fourier Transform. IEEE Trans. Signal Process. 2010, 58, 5118–5128. [Google Scholar] [CrossRef]
- Durak, L.; Arikan, O. Short-time Fourier transform: Two fundamental properties and an optimal implementation. IEE Trans. Signal Process. 2003, 51, 1231–1242. [Google Scholar] [CrossRef]
- Ye, X.W.; Jin, T.; Yun, C.B. A review on deep learning-based structural health monitoring of civil infrastructures. Smart Struct. Syst. 2019, 24, 267–286. [Google Scholar]
- Qin, L.; Liu, H.; Han, D. Damage identification for composite structures using Lamb-wave signals and one-dimensional CNNs. Compos. Struct. 2020, 246, 112454. [Google Scholar]
- Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [Google Scholar] [CrossRef]
- Dorafshan, S.; Maguire, M.; Hoffer, N. Bridge crack detection using deep learning: Data collection and network design. Constr. Build. Mater. 2018, 186, 580–590. [Google Scholar]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep convolutional neural networks with transfer learning for crack detection in built infrastructure. Eng. Comput. 2018, 34, 113–122. [Google Scholar]
- Li, S.; Zhao, X.; Zhou, G.; Ou, J. Vision-based fatigue crack detection of steel bridges using transfer learning and CNNs. J. Bridge Eng. 2021, 26, 04021009. [Google Scholar]
- Bao, Y.; Tang, Z.; Li, H.; Zhang, Y. Computer vision and deep learning-based data anomaly detection for structural health monitoring. Struct. Health Monit. 2019, 18, 401–421. [Google Scholar]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Xu, Y.; Turkan, Y. Vision-based crack detection using deep learning and convolutional neural networks. Autom. Constr. 2019, 91, 196–206. [Google Scholar]
- Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52–58. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. Image Vis. Comput. 2016, 57, 103–113. [Google Scholar]
- Fekrmandi, H.; Rojas, J.; Tansel, I.N.; Yapici, A.; Uragun, B. Investigation of the computational efficiency and validity of the surface response to excitation method. Measurement 2015, 62, 33–40. [Google Scholar] [CrossRef]
- Baghalian, A.; Tashakori, S.; Senyurek, V.Y.; McDaniel, D.; Fekrmandi, H.; Tansel, I.N. Non-contact quantification of longitudinal and circumferential defects in pipes using the surface response to excitation (SuRE) method. Int. J. Progn. Health Manag. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Tashakori, S.; Baghalian, A.; Unal, M.; Senyurek, V.Y.; Fekrmandi, H.; McDaniel, D.; Tansel, I.N. Load Monitoring Using Surface Response to Excitation Method, in Mechanics of Composite and Multi-functional Materials. In Volume 7: Proceedings of the 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics; Springer International Publishing: Cham, Switzerland, 2017; pp. 209–214. [Google Scholar]
- Tansel, I.N.; Grisso, B.L.; Singh, G.; Korla, S.; Salvino, L.W. Health monitoring of aluminum weldings with the surface response to excitation (SuRE) approach. In Structural Health Monitoring 2011: Condition Based Maintenance and Intelligent Structures (8th IWSHM); DEStech Publications, Inc.: Stanford, CA, USA, 2011. [Google Scholar]
- Ono, K. A Comprehensive Report on Ultrasonic Attenuation of Engineering Materials, Including Metals, Ceramics, Polymers, Fiber-Reinforced Composites, Wood, and Rocks. Appl. Sci. 2020, 10, 2230. [Google Scholar] [CrossRef]
- Pylaev, A.E.; Kostikova, E.A.; Yurkov, A.L.; Kalugin, D.I.; Malakho, A.P.; Avdeev, V.V.; Lepin, V.N.; Oktyabr’skaya, L.V.; Minchuk, S.V. Velocity and attenuation of acoustic waves in polymers and polymer composites. Polym. Sci. Ser. D 2018, 11, 272–276. [Google Scholar] [CrossRef]
Specimen | Waveform and Local | Frequency (kHz) | Amplitude (Vpp) | Duty (%) | Type | Number of Cycles | Period (ms) |
---|---|---|---|---|---|---|---|
Obround plate (PLA) | Pulse and Burst | 20 | 20 | 50 | N_Cycle | 30 | 100 |
Hollow Cylinder (PLA) | Pulse and Burst | 20 | 20 | 50 | N_Cycle | 10 | 100 |
Square Plate (PLA) | Pulse and Burst | 160 | 20 | 50 | N_Cycle | 40 | 100 |
Obround plate (Copper) | Pulse and Burst | 20 | 10 | 50 | N_Cycle | 4 | 10 |
Hollow Cylinder (Copper) | Pulse and Burst | 10 | 20 | 50 | N_Cycle | 4 | 100 |
Square Plate (Copper) | Pulse and Burst | 50 | 20 | 50 | N_Cycle | 4 | 100 |
Stage | Layers | Output Size (Input 224 × 224 × 3) |
Input Layer | Conv 7 × 7, 64 filters, stride 2 + BN + ReLU | 112 × 112 [64 filter depth] |
MaxPool 3 × 3, stride 2 | 56 × 56 [64 filter depth] | |
Conv2_x | 2 residual blocks (each: 2 × Conv 3 × 3, 64 filters) | 56 × 56 [64 filter depth] |
Conv3_x | 2 residual blocks (each: 2 × Conv 3 × 3, 128 filters, first block has stride 2) | 28 × 28 [128 filter depth] |
Con4_x | 2 residual blocks (each 2 × Conv 3 × 3, 256 filters, first block has stride 2) | 14 × 14 [256 filter depth] |
Conv5_x | 2 residual blocks (each: 2 × Conv 3 × 3, 512 filters, first block has stride 2) | 7 × 7 [512 filter depth] |
Pooling | Global average pooling | 1 × 1 [512 filter depth] |
FC Layer | Fully connected | numClasses |
Total Learnable Layers | 18 convolutional/fully connected layers |
Dataset Partitioning Strategies | Classification Accuracies |
---|---|
50/50 Train–Test Split | 97.19% |
70/15/15 Train–Validation–Test Split | 98.61% |
5 K-Fold Cross-Validation | 100% |
Specimen | PLA | Copper |
---|---|---|
Load/Locations | ||
Baseline (No Load) | 100% | 100% |
100 N | 100% | 100% |
200 N | 100% | 100% |
300 N | 100% | 100% |
400 N | 100% | 100% |
500 N | 100% | 100% |
Overall Test Accuracy | 100% | 100% |
Specimen | PLA | Copper |
---|---|---|
Load/Locations | ||
Baseline (No Load) | 85% | 100% |
100 N (Side A) | 100% | 100% |
100 N (Side B) | 100% | 100% |
200 N (Side A) | 100% | 100% |
200 N (Side B) | 85% | 100% |
300 N (Side A) | 95% | 100% |
300 N (Side B) | 100% | 100% |
400 N (Side A) | 95% | 100% |
400 N (Side B) | 95% | 100% |
500 N (Side A) | 90% | 100% |
500 N (Side B) | 90% | 100% |
Overall test accuracy | 94.09% | 100% |
Specimen | PLA | Copper | PLA | Copper | |
---|---|---|---|---|---|
Load/Locations | Load/Locations | ||||
Baseline A to C (No Load) | 100% | 100% | 400 N (Zone A) | 95% | 100% |
Baseline D to F (No Load) | 95% | 95% | 400 N (Zone B) | 85% | 100% |
Baseline G to I (No Load) | 100% | 100% | 400 N (Zone C) | 90% | 95% |
400 N (Zone D) | 70% | 100% | |||
100 N (Zone A) | 100% | 100% | 400 N (Zone E) | 90% | 80% |
100 N (Zone B) | 100% | 100% | 400 N (Zone F) | 100% | 100% |
100 N (Zone C) | 95% | 95% | 400 N (Zone G) | 100% | 100% |
100 N (Zone D) | 100% | 100% | 400 N (Zone H) | 75% | 100% |
100 N (Zone E) | 100% | 100% | 400 N (Zone I) | 100% | 100% |
100 N (Zone F) | 100% | 100% | |||
100 N (Zone G) | 100% | 100% | 500 N (Zone A) | 100% | 100% |
100 N (Zone H) | 100% | 100% | 500 N (Zone B) | 85% | 100% |
100 N (Zone I) | 100% | 95% | 500 N (Zone C) | 95% | 100% |
500 N (Zone D) | 100% | 100% | |||
200 N (Zone A) | 75% | 85% | 500 N (Zone E) | 70% | 95% |
200 N (Zone B) | 100% | 100% | 500 N (Zone F) | 100% | 100% |
200 N (Zone C) | 80% | 95% | 500 N (Zone G) | 100% | 100% |
200 N (Zone D) | 90% | 95% | 500 N (Zone H) | 75% | 95% |
200 N (Zone E) | 100% | 100% | 500 N (Zone I) | 100% | 100% |
200 N (Zone F) | 100% | 100% | |||
200 N (Zone G) | 100% | 100% | |||
200 N (Zone H) | 100% | 100% | |||
200 N (Zone I) | 100% | 100% | |||
300 N (Zone A) | 70% | 100% | |||
300 N (Zone B) | 95% | 100% | |||
300 N (Zone C) | 65% | 95% | |||
300 N (Zone D) | 100% | 100% | |||
300 N (Zone E) | 70% | 95% | |||
300 N (Zone F) | 95% | 95% | |||
300 N (Zone G) | 100% | 100% | |||
300 N (Zone H) | 100% | 100% | |||
300 N (Zone I) | 100% | 100% | |||
Overall Accuracy | PLA | 91.04% | Copper | 97.81% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurent, M.L.; Marquis, G.E.; Gonzalez, M.; Tansel, I.; Tosunoglu, S. Embedded Sensing in Additive Manufacturing Metal and Polymer Parts: A Comparative Study of Integration Techniques and Structural Health Monitoring Performance. Algorithms 2025, 18, 613. https://doi.org/10.3390/a18100613
Laurent ML, Marquis GE, Gonzalez M, Tansel I, Tosunoglu S. Embedded Sensing in Additive Manufacturing Metal and Polymer Parts: A Comparative Study of Integration Techniques and Structural Health Monitoring Performance. Algorithms. 2025; 18(10):613. https://doi.org/10.3390/a18100613
Chicago/Turabian StyleLaurent, Matthew Larnet, George Edward Marquis, Maria Gonzalez, Ibrahim Tansel, and Sabri Tosunoglu. 2025. "Embedded Sensing in Additive Manufacturing Metal and Polymer Parts: A Comparative Study of Integration Techniques and Structural Health Monitoring Performance" Algorithms 18, no. 10: 613. https://doi.org/10.3390/a18100613
APA StyleLaurent, M. L., Marquis, G. E., Gonzalez, M., Tansel, I., & Tosunoglu, S. (2025). Embedded Sensing in Additive Manufacturing Metal and Polymer Parts: A Comparative Study of Integration Techniques and Structural Health Monitoring Performance. Algorithms, 18(10), 613. https://doi.org/10.3390/a18100613