Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework
Abstract
1. Introduction
2. Preliminary Theory and Related Work
2.1. Dynamical Systems
2.2. Bursting Oscillations
2.3. Time-Delay Embedding
2.4. Koopman Theory
2.5. Singular Value Decomposition (SVD)
2.6. Dynamic Mode Decomposition (DMD)
2.7. Constructing a Forced Linear Model
3. Algorithm Summary: HAVOK Analysis Framework for Bursting Oscillations
Algorithm 1: HAVOK Analysis Framework for Detecting Bursting Oscillations in Dynamical Systems. |
Input: Time series data from the dynamical system, Embedding dimension Output: Visualizations of eigen time series Embedded flow fields Reconstructed flow fields Bursting oscillation prediction Steps: 1. Collect Time Series Data: Gather the time series data from the dynamical system. Denote the collected data as “data”. 2. Construct Hankel Matrix: Construct the Hankel matrix H using the collected time series data and embedding dimension . |
3. Perform Singular Value Decomposition (SVD): Apply SVD to the Hankel matrix H. |
Sigs = [] 4. Choose Truncation Rank for Reduced SVD: Truncate the SVD results to the rank r. |
5. Plot Embedded Flow Fields: Plot the two-dimensional and three-dimensional embedded flow field using the truncated SVD results. |
6. Apply Dynamic Mode Decomposition (DMD): Apply DMD on the reduced matrix and construct the forced linear model. Forced linear model: Plot the two-dimensional and three-dimensional reconstructed flow fields from the forced linear model. 7. Plot and Analyze Eigen Time Series: Plot and analyze the visualizations of the dominant eigen time series and the forced time series 8. Quickly Check for Bursting: Observe the visualization of for intermittent periodic bursts to detect bursting. Mark “bursting detected” if intermittent periodic bursts are observed. 9. Return Results: Return the visualizations of the eigen time series, the embedded flow fields, the reconstructed flow fields, and the bursting detection status. Return |
4. Results and Discussion
4.1. The HRVD Oscillator Model with a Periodic External Excitation
4.2. Advantages
4.2.1. Revealing Hidden Dynamical Behaviors
4.2.2. Reducing Overlapping Phenomena through Higher-Dimensional Embedding
4.2.3. Analyzing Quasi-Periodic Behavior and Steady-State Nonlinear Oscillations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, Z.W.; Zhang, Y.W.; Li, X.; Ding, H.; Chen, L.Q. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 2017, 391, 35–49. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Lu, Y.N.; Chen, L.Q. Energy harvesting via nonlinear energy sink for whole spacecraft. Sci. China Technol. Sci. 2019, 62, 1483–1491. [Google Scholar] [CrossRef]
- Yang, T.Z.; Hou, S.A.; Qin, Z.H.; Ding, Q.; Chen, L.Q. A dynamic reconfigurable nonlinear energy sink. J. Sound Vib. 2020, 493, 115629. [Google Scholar] [CrossRef]
- Zang, J.; Cao, R.Q.; Zhang, Y.W.; Fang, B.; Chen, L.Q. A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105620. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.Z.; Wu, M.Q. Theory and experiment of nonlinear vibrations and dynamic snap-through phenomena for bi-stable asymmetric laminated composite square panels under foundation excitation. Compos. Struct. 2019, 225, 111140. [Google Scholar] [CrossRef]
- Karami, H.; Karimi, S.; Bonakdari, H.; Shamshirband, S. Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming. Neural Comput. Appl. 2018, 29, 983–989. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Erlicher, S. A modified hybrid Van der Pol-Duffing-Rayleigh oscillator for modelling the lateral walking force on a rigid floor. Phys. D Nonlinear Phenom. 2017, 358, 1–14. [Google Scholar] [CrossRef]
- Kuehn, C. Multiple Time Scale Dynamics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Qian, Y.H.; Wang, H.L.; Zhang, D.J. Bursting Dynamics in the General Hybrid Rayleigh-van der Pol-Duffing Oscillator with Two External Periodic Excitations. J. Vib. Eng. Technol. 2023, 12, 2943–2957. [Google Scholar] [CrossRef]
- Ma, X.D.; Bi, Q.S.; Wang, L.F. Complex bursting dynamics in the cubic-quintic Duffing-van der Pol system with two external periodic excitations. Meccanica 2022, 57, 1747–1766. [Google Scholar] [CrossRef]
- Rinzel, J. Bursting oscillations in an excitable membrane model. Ordinary Part. Differ. Equ. 1985, 1151, 304–316. [Google Scholar]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kutz, J.N. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 2016, 11, e0150171. [Google Scholar] [CrossRef] [PubMed]
- Budišić, M.; Mohr, R.M.; Mezić, I. Applied koopmanism. Chaos 2012, 22, 047510. [Google Scholar] [CrossRef]
- Jin, Y.H.; Hou, L.; Zhong, S.; Yi, H.M.; Chen, Y.S. Invertible Koopman Network and its application in data-driven modeling for dynamic systems. Mech. Syst. Signal Process. 2023, 200, 110604. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence. Warwick, Lecture Notes in Mathematics; Rand, D., Young, L.-S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef]
- Arbabi, H.; Mezić, I. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 2017, 16, 2096–2126. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic Mode Decomposition and Its Variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [Google Scholar] [CrossRef]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kaiser, E.; Kutz, J.N. Chaos as an intermittently forced linear system. Nat. Commun. 2017, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Brunton, B.W.; Johnson, L.A.; Ojemann, J.G.; Kutz, J.N. Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 2016, 258, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, S.M.; Ichinaga, S.M.; Brunton, S.L.; Kutz, J.N.; Brunton, B.W. Structured timedelay models for dynamical systems with connections to Frenet-Serret frame. Proc. R. Soc. A 2021, 477, 20210097. [Google Scholar] [CrossRef] [PubMed]
Embedding Dimension m (r = 4) | MSE | Degree of Smoothness (Embedded Flow Field) | Degree of Smoothing (Time Series of Forced Characteristics) |
---|---|---|---|
m = 10 | 4.8309 × 10−10 | low | low |
m = 50 | 2.4387 × 10−11 | medium | low |
m = 100 | 2.661 × 10−11 | high | medium |
m = 200 | 1.978 × 10−10 | high | high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Qian, Y. Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework. Algorithms 2024, 17, 388. https://doi.org/10.3390/a17090388
Cai X, Qian Y. Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework. Algorithms. 2024; 17(9):388. https://doi.org/10.3390/a17090388
Chicago/Turabian StyleCai, Xueyi, and Youhua Qian. 2024. "Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework" Algorithms 17, no. 9: 388. https://doi.org/10.3390/a17090388
APA StyleCai, X., & Qian, Y. (2024). Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework. Algorithms, 17(9), 388. https://doi.org/10.3390/a17090388