Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework
Abstract
:1. Introduction
2. Preliminary Theory and Related Work
2.1. Dynamical Systems
2.2. Bursting Oscillations
2.3. Time-Delay Embedding
2.4. Koopman Theory
2.5. Singular Value Decomposition (SVD)
2.6. Dynamic Mode Decomposition (DMD)
2.7. Constructing a Forced Linear Model
3. Algorithm Summary: HAVOK Analysis Framework for Bursting Oscillations
Algorithm 1: HAVOK Analysis Framework for Detecting Bursting Oscillations in Dynamical Systems. |
Input: Time series data from the dynamical system, Embedding dimension Output: Visualizations of eigen time series Embedded flow fields Reconstructed flow fields Bursting oscillation prediction Steps: 1. Collect Time Series Data: Gather the time series data from the dynamical system. Denote the collected data as “data”. 2. Construct Hankel Matrix: Construct the Hankel matrix H using the collected time series data and embedding dimension . |
3. Perform Singular Value Decomposition (SVD): Apply SVD to the Hankel matrix H. |
Sigs = [] 4. Choose Truncation Rank for Reduced SVD: Truncate the SVD results to the rank r. |
5. Plot Embedded Flow Fields: Plot the two-dimensional and three-dimensional embedded flow field using the truncated SVD results. |
6. Apply Dynamic Mode Decomposition (DMD): Apply DMD on the reduced matrix and construct the forced linear model. Forced linear model: Plot the two-dimensional and three-dimensional reconstructed flow fields from the forced linear model. 7. Plot and Analyze Eigen Time Series: Plot and analyze the visualizations of the dominant eigen time series and the forced time series 8. Quickly Check for Bursting: Observe the visualization of for intermittent periodic bursts to detect bursting. Mark “bursting detected” if intermittent periodic bursts are observed. 9. Return Results: Return the visualizations of the eigen time series, the embedded flow fields, the reconstructed flow fields, and the bursting detection status. Return |
4. Results and Discussion
4.1. The HRVD Oscillator Model with a Periodic External Excitation
4.2. Advantages
4.2.1. Revealing Hidden Dynamical Behaviors
4.2.2. Reducing Overlapping Phenomena through Higher-Dimensional Embedding
4.2.3. Analyzing Quasi-Periodic Behavior and Steady-State Nonlinear Oscillations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, Z.W.; Zhang, Y.W.; Li, X.; Ding, H.; Chen, L.Q. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 2017, 391, 35–49. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Lu, Y.N.; Chen, L.Q. Energy harvesting via nonlinear energy sink for whole spacecraft. Sci. China Technol. Sci. 2019, 62, 1483–1491. [Google Scholar] [CrossRef]
- Yang, T.Z.; Hou, S.A.; Qin, Z.H.; Ding, Q.; Chen, L.Q. A dynamic reconfigurable nonlinear energy sink. J. Sound Vib. 2020, 493, 115629. [Google Scholar] [CrossRef]
- Zang, J.; Cao, R.Q.; Zhang, Y.W.; Fang, B.; Chen, L.Q. A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105620. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.Z.; Wu, M.Q. Theory and experiment of nonlinear vibrations and dynamic snap-through phenomena for bi-stable asymmetric laminated composite square panels under foundation excitation. Compos. Struct. 2019, 225, 111140. [Google Scholar] [CrossRef]
- Karami, H.; Karimi, S.; Bonakdari, H.; Shamshirband, S. Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming. Neural Comput. Appl. 2018, 29, 983–989. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Erlicher, S. A modified hybrid Van der Pol-Duffing-Rayleigh oscillator for modelling the lateral walking force on a rigid floor. Phys. D Nonlinear Phenom. 2017, 358, 1–14. [Google Scholar] [CrossRef]
- Kuehn, C. Multiple Time Scale Dynamics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Qian, Y.H.; Wang, H.L.; Zhang, D.J. Bursting Dynamics in the General Hybrid Rayleigh-van der Pol-Duffing Oscillator with Two External Periodic Excitations. J. Vib. Eng. Technol. 2023, 12, 2943–2957. [Google Scholar] [CrossRef]
- Ma, X.D.; Bi, Q.S.; Wang, L.F. Complex bursting dynamics in the cubic-quintic Duffing-van der Pol system with two external periodic excitations. Meccanica 2022, 57, 1747–1766. [Google Scholar] [CrossRef]
- Rinzel, J. Bursting oscillations in an excitable membrane model. Ordinary Part. Differ. Equ. 1985, 1151, 304–316. [Google Scholar]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kutz, J.N. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 2016, 11, e0150171. [Google Scholar] [CrossRef] [PubMed]
- Budišić, M.; Mohr, R.M.; Mezić, I. Applied koopmanism. Chaos 2012, 22, 047510. [Google Scholar] [CrossRef]
- Jin, Y.H.; Hou, L.; Zhong, S.; Yi, H.M.; Chen, Y.S. Invertible Koopman Network and its application in data-driven modeling for dynamic systems. Mech. Syst. Signal Process. 2023, 200, 110604. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence. Warwick, Lecture Notes in Mathematics; Rand, D., Young, L.-S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef]
- Arbabi, H.; Mezić, I. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 2017, 16, 2096–2126. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic Mode Decomposition and Its Variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [Google Scholar] [CrossRef]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kaiser, E.; Kutz, J.N. Chaos as an intermittently forced linear system. Nat. Commun. 2017, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Brunton, B.W.; Johnson, L.A.; Ojemann, J.G.; Kutz, J.N. Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 2016, 258, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, S.M.; Ichinaga, S.M.; Brunton, S.L.; Kutz, J.N.; Brunton, B.W. Structured timedelay models for dynamical systems with connections to Frenet-Serret frame. Proc. R. Soc. A 2021, 477, 20210097. [Google Scholar] [CrossRef] [PubMed]
Embedding Dimension m (r = 4) | MSE | Degree of Smoothness (Embedded Flow Field) | Degree of Smoothing (Time Series of Forced Characteristics) |
---|---|---|---|
m = 10 | 4.8309 × 10−10 | low | low |
m = 50 | 2.4387 × 10−11 | medium | low |
m = 100 | 2.661 × 10−11 | high | medium |
m = 200 | 1.978 × 10−10 | high | high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Qian, Y. Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework. Algorithms 2024, 17, 388. https://doi.org/10.3390/a17090388
Cai X, Qian Y. Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework. Algorithms. 2024; 17(9):388. https://doi.org/10.3390/a17090388
Chicago/Turabian StyleCai, Xueyi, and Youhua Qian. 2024. "Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework" Algorithms 17, no. 9: 388. https://doi.org/10.3390/a17090388
APA StyleCai, X., & Qian, Y. (2024). Detection and Reconstruction of Bursting Oscillations in Complex Systems Using the HAVOK Analysis Framework. Algorithms, 17(9), 388. https://doi.org/10.3390/a17090388