Numerical Algorithms for Identification of Convection Coefficient and Source in a Magnetohydrodynamics Flow
Abstract
:1. Introduction
2. Formulation of the Direct and Inverse Problems
2.1. The Direct Problem
2.2. The Inverse Problems
3. Reduction of the IP1, IP2, and IP3 to Nonclassical Problems
4. Well-Posedness of the Inverse Problems
4.1. The IP2
4.2. The IP1 and IP3
5. Finite Difference Approximation of the Inverse Problems
6. Algorithms for Solution of Finite Difference Algebraic Systems
6.1. The IP2
6.2. The IP3 and IP1
7. Computational Results
7.1. Inverse Problem without Noise
7.2. Inverse Problem with a Noise
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alifanov, O.M.; Artyukhin, E.A.; Rumyantsev, S.V. Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems; Begell House: New York, NY, USA; Wallingford, UK, 2015. [Google Scholar]
- Canon, J.R.; Van Der Hoek, J. Diffusion subject to the specification of mass. J. Math. Appl. 1986, 115, 517–529. [Google Scholar] [CrossRef]
- Kabanikhin, S.I. Inverse and Ill-Posed Problems Theory and Applications; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Krukovskiy, A.J.; Poveschenko, J.A.; Podruga, V.O. Convergence of some iterative algorithms for numerical solution of two-dimentional non-stationary problems of magnetic hydrodynamics. Math. Model. 2023, 35, 57–74. (In Russian) [Google Scholar]
- Ladyzhenskaia, V.A.; Solonnikov, V.A.; Ural’tceva, N.N. Linear and Quasi-linear Equations of Parabolic Type; American Mathematical Society: Providence, RI, USA, 1986. [Google Scholar]
- Samarskii, A.A.; Vabishchevich, P.N. Numerical Methods for Solving Inverse Problems of Mathematical Physics; Walter de Gruyter: Berlin, Germany, 2007. [Google Scholar]
- Vabishchevich, P.N.; Vasil’ev, V.I. Computational determination of the lowest order coefficient in a parabolic equation. Dokl. Math. 2014, 89, 179–181. [Google Scholar] [CrossRef]
- Vabishchevich, P.N.; Vasil’ev, V.I. Computational algorithms for solving the coefficient inverse problem for parabolic equations. Inv. Probl. Sci. Eng. 2016, 24, 42–59. [Google Scholar] [CrossRef]
- Ashyraliev, A.; Sazaklioglu, A.V. Investgation of a time-dependent source identification with integral overdetermination. Numer. Funct. Anal. Optim. 2017, 38, 1276–1294. [Google Scholar] [CrossRef]
- Borzi, A. Modelling with Ordinary Differential Equations. A Comprehensive Approach; Chapman and Hall, CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Georgiev, S.G.; Vulkov, L.V. Computational recovery of time-dependent volatility from integral observations in option pricing. J. Comput. Sci. 2019, 39, 101054. [Google Scholar] [CrossRef]
- Glotov, D.; Hames, W.E.; Meir, A.J.; Ngoma, S. An integral constrained parabolic problem with applications in thermochronology. Comput. Math. Appl. 2016, 71, 2301–2312. [Google Scholar] [CrossRef]
- Glotov, D.; Hames, W.E.; Meir, A.J.; Ngoma, S. An inverse diffusion coefficient problem for a parabolic equation with integral constraint. Int. J. Numer. Anal. Model. 2018, 15, 552–563. [Google Scholar]
- Evans, L.C. Partial Differential Equations, 2nd ed.; Graduate Studies in Mathematics 19; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- He, Y. Unconditional convergence of the Euler semi-implicit scheme for the three dimensional incompressible MHD equations. IMA J. Numer. Anal. 2015, 33, 767–801. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Problems for Partial Differential Equations, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Landau, L.D.; Bell, J.; Kearsley, M.; Pitaevski, L.; Lifshitz, E.; Sykes, J. Electrodynamics of Continuous Media; Elsevier: Amsterdam, The Netherlands, 2013; eBook ISBN 9781483293752. [Google Scholar]
- Nguyen, T.N.O. Source identification for parabolic equations from integral observations by the finite difference splitting method. Acta Math. Vietnam. 2024, 49, 283–308. [Google Scholar]
- Samarskii, A.A.; Nikolaev, E.S. Numerical Methods for Grid Equations: Volume I Direct Methods; Birkhäuser Verlag: Berlin, Germany, 1989. [Google Scholar]
- Slodicka, M.; Seliga, L. Identification of memory kernels in hyperbolic problems. J. Comp. Appl. Math. 2017, 311, 618–629. [Google Scholar] [CrossRef]
- Tsyba, V.; Chebatorev, A.Y. Optimal control asymptotics of a magnetohydrodynamic flow. Comp. Math. Math. Phys. 2009, 49, 466–473. [Google Scholar] [CrossRef]
- Marchuk, G.I. Adjoint Equations and Analysis of Complex Systems; Kluwer Acad. Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Koleva, M.N.; Vulkov, L.G. A Galerkin finite element method for reconstruction of time-dependent convection coefficients and source in a 1-D model of magnetohydrodynamics. Appl. Sci. 2024, 14, 5949. [Google Scholar] [CrossRef]
- Ren, Z.; Guo, S.; Li, Z.; Wu, Z. Adjoint-based parameter and state estimation in 1-D magnetohydrodynamics (MHD) flow system. J. Optim. Manag. Optim. 2018, 14, 1579–1594. [Google Scholar] [CrossRef]
- Yu, P.X.; Tian, Z.F. Comparison of the simplified and full MHD models for laminar incompressible flow past a circular cylinder. Appl. Math. Model. 2017, 41, 143–163. [Google Scholar] [CrossRef]
- Khankishiyev, Z.F. Solution of one problem for linear loaded parabolic type differential equation with integral conditions. Adv. Math. Mod. Appl. 2022, 7, 178–190. [Google Scholar]
- Vabishchevich, P.N.; Klibanov, M.V. Numerical identification of the leading coefficient of a parabolic equation. Differ. Equ. 2016, 52, 855–862. [Google Scholar] [CrossRef]
- Kandilarov, J.; Vulkov, L. Simultaneous numerical reconstruction of time-dependent convection coefficient and source in magnetohydrodynamics flow system. In Proceedings of the 16th Annual Meeting of the Bulgarian Section of SIAM, (BGSIAM’21) (to Appear), Sofia, Bulgaria, 21–23 December 2021. [Google Scholar]
u | B | f | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ratio | Order | Ratio | Order | Ratio | Order | |||||
5 | 5 | 9.2310e-03 | - | - | 6.5473e-04 | - | - | 1.1485e-02 | ||
10 | 10 | 5.0943e-03 | 1.81 | 0.86 | 1.6591e-04 | 3.95 | 1.98 | 6.1159e-03 | 1.88 | 0.91 |
20 | 20 | 2.6823e-03 | 1.90 | 0.93 | 4.5833e-05 | 3.60 | 1.85 | 3.1974e-03 | 1.91 | 0.94 |
40 | 40 | 1.3803e-03 | 1.94 | 0.96 | 1.6712e-05 | 2.72 | 1.45 | 1.6416e-03 | 1.95 | 0.96 |
80 | 80 | 7.0073e-04 | 1.97 | 0.98 | 7.1775e-06 | 2.32 | 1.21 | 8.3274e-04 | 1.97 | 0.98 |
160 | 160 | 3.5312e-04 | 1.98 | 0.99 | 3.3274e-06 | 2.14 | 1.11 | 4.1952e-04 | 1.99 | 0.99 |
ffl | 0 | 0.0005 | 0.001 | 0.01 | 0.1 |
---|---|---|---|---|---|
u | 1.3803e-03 | 1.3638e-03 | 1.5238e-03 | 2.1379e-03 | 1.6747e-02 |
B | 1.6712e-05 | 1.6546e-05 | 1.6297e-05 | 2.5556e-05 | 1.6864e-04 |
f | 1.6416e-03 | 1.8412e-03 | 1.9766e-03 | 7.8766e-03 | 6.8009e-02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandilarov, J.D.; Vulkov, L.G. Numerical Algorithms for Identification of Convection Coefficient and Source in a Magnetohydrodynamics Flow. Algorithms 2024, 17, 387. https://doi.org/10.3390/a17090387
Kandilarov JD, Vulkov LG. Numerical Algorithms for Identification of Convection Coefficient and Source in a Magnetohydrodynamics Flow. Algorithms. 2024; 17(9):387. https://doi.org/10.3390/a17090387
Chicago/Turabian StyleKandilarov, Juri D., and Lubin G. Vulkov. 2024. "Numerical Algorithms for Identification of Convection Coefficient and Source in a Magnetohydrodynamics Flow" Algorithms 17, no. 9: 387. https://doi.org/10.3390/a17090387
APA StyleKandilarov, J. D., & Vulkov, L. G. (2024). Numerical Algorithms for Identification of Convection Coefficient and Source in a Magnetohydrodynamics Flow. Algorithms, 17(9), 387. https://doi.org/10.3390/a17090387