Fast Minimum Error Entropy for Linear Regression
Abstract
:1. Introduction
2. The Related Algorithms
2.1. MEE
2.2. The Hermite Polynomials
2.3. The Gram–Charlier Expansion
3. Methodology
4. Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baggenstoss, P.M. Maximum Entropy PDF Design Using Feature Density Constraints: Applications in Signal Processing. IEEE Trans. Signal Process. 2015, 11, 2815–2825. [Google Scholar] [CrossRef]
- Li, Y.; Bai, X.; Yuan, D.; Yu, C.; San, X.; Guo, Y.; Zhang, L.; Ye, J. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat. Commun. 2023, 14, 3171. [Google Scholar] [CrossRef] [PubMed]
- Bisikalo, O.; Kharchenko, V.; Kovtun, V.; Krak, I.; Pavlov, S. Parameterization of the stochastic model for evaluating variable small data in the Shannon entropy basis. Entropy 2023, 25, 184. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, F.; Su, L.; Lin, B.; Chen, S.; Zhang, Y. State Parameter Fusion Estimation for Intelligent Vehicles Based on IMM-MCCKF. Appl. Sci. 2024, 14, 4495. [Google Scholar] [CrossRef]
- Carli, F.P.; Chen, T.; Ljung, L. Maximum entropy kernels for system identification. IEEE Trans. Autom. Control 2016, 62, 1471–1477. [Google Scholar] [CrossRef]
- Fan, X.; Chen, L.; Huang, D.; Tian, Y.; Zhang, X.; Jiao, M.; Zhou, Z. From Single Metals to High-Entropy Alloys: How Machine Learning Accelerates the Development of Metal Electrocatalysts. Adv. Funct. Mater. 2024, 1, 2401887. [Google Scholar] [CrossRef]
- Han, T.T.; Ge, S.S.; Lee, T.H. Persistent Dwell-Time Switched Nonlinear Systems: Variation Paradigm and Gauge Design. IEEE Trans. Autom. Control 2010, 55, 321–337. [Google Scholar]
- Chesi, G. Stabilization and Entropy Reduction via SDP-Based Design of Fixed-Order Output Feedback Controllers and Tuning Parameters. IEEE Trans. Autom. Control 2017, 62, 1094–1108. [Google Scholar] [CrossRef]
- Wei, P.; Li, H.X. Spatiotemporal entropy for abnormality detection and localization of Li-ion battery packs. IEEE Trans. Ind. Electron. 2023, 70, 12851–12859. [Google Scholar] [CrossRef]
- Wang, Z.; Li, G.; Yao, L.; Cai, Y.; Lin, T.; Zhang, J.; Dong, H. Intelligent fault detection scheme for constant-speed wind turbines based on improved multiscale fuzzy entropy and adaptive chaotic Aquila optimization-based support vector machine. ISA Trans. 2023, 138, 582–602. [Google Scholar] [CrossRef] [PubMed]
- Daneshpazhouh, A.; Sami, A. Entropy-based outlier detection using semi-supervised approach with few positive examples. Pattern Recogn. Lett. 2014, 49, 77–84. [Google Scholar] [CrossRef]
- Qu, B.; Wang, Z.; Shen, B.; Dong, H. Decentralized dynamic state estimation for multi-machine power systems with non-Gaussian noises: Outlier detection and localization. Automatica 2023, 153, 111010. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, G.; Peng, B.; He, J.; Zhang, K. Novel robust minimum error entropy wasserstein distribution kalman filter under model uncertainty and non-gaussian noise. Signal Process. 2023, 203, 108806. [Google Scholar] [CrossRef]
- Sun, M.; Davies, M.E.; Proudler, I.K.; Hopgood, J.R. Adaptive kernel Kalman filter. IEEE Trans. Signal Process. 2023, 71, 713–726. [Google Scholar] [CrossRef]
- Wu, L.; Lin, H.; Hu, B.; Tan, C.; Gao, Z.; Liu, Z.; Li, S.Z. Beyond homophily and homogeneity assumption: Relation-based frequency adaptive graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 8497–8509. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, H. Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises. IEEE Trans. Autom. Control 2006, 51, 695–700. [Google Scholar]
- Wang, Y.; Tang, Y.Y.; Li, L. Minimum error entropy based sparse representation for robust subspace clustering. IEEE Trans. Signal Process. 2015, 63, 4010–4021. [Google Scholar] [CrossRef]
- Wang, M.; Deng, W. Deep face recognition: A survey. Neurocomputing 2021, 429, 215–244. [Google Scholar] [CrossRef]
- Lin, M.; Cheng, C.; Peng, Z.; Dong, X.; Qu, Y.; Meng, G. Nonlinear dynamical system identification using the sparse regression and separable least squares methods. J. Sound Vib. 2021, 505, 116141. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, S.; Ma, W.; Chen, B.; Principe, J.C. Minimum error entropy algorithms with sparsity penalty constraints. Entropy 2015, 17, 3419–3437. [Google Scholar] [CrossRef]
- Huang, S.; Tran, T.D. Sparse signal recovery via generalized entropy functions minimization. IEEE Trans. Signal Process. 2018, 67, 1322–1337. [Google Scholar] [CrossRef]
- Yue, H.; Wang, H. Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems. IEEE Trans. Autom. Control 2003, 48, 118–122. [Google Scholar]
- Wang, H. Minimum entropy control of non-Gaussian dynamic stochastic systems. IEEE Trans. Autom. Control 2002, 47, 398–403. [Google Scholar] [CrossRef]
- Mitra, R.; Bhatia, V. Minimum error entropy criterion based channel estimation for massive-MIMO in VLC. IEEE Trans. Veh. Technol. 2018, 68, 1014–1018. [Google Scholar] [CrossRef]
- Erdogmus, D.; Principe, J.C. Convergence properties and data efficiency of the minimum error entropy criterion in adaline training. IEEE Trans. Signal Process. 2003, 51, 1966–1978. [Google Scholar]
- Chen, B.; Yuan, Z.; Zheng, N.; Principe, J.C. Kernel minimum error entropy algorithm. Neurocomputing 2013, 121, 160–169. [Google Scholar] [CrossRef]
- Hu, T.; Wu, Q.; Zhou, D.X. Convergence of gradient descent for minimum error entropy principle in linear regression. IEEE Trans. Signal Process. 2016, 64, 6571–6579. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Liu, X.; Yuan, Z.; Principe, J.C. Convergence of a fixed-point minimum error entropy algorithm. Entropy 2015, 17, 5549–5560. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, Y.; Hu, J.; Zhang, M. On optimal estimations with minimum error entropy criterion. J. Frankl. Inst. 2010, 347, 545–558. [Google Scholar]
- Heravi, A.R.; Hodtani, G.A. A new information theoretic relation between minimum error entropy and maximum correntropy. IEEE Signal Process. Lett. 2018, 25, 921–925. [Google Scholar]
- Yang, S.; Tan, J.; Chen, B. Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion. Entropy 2022, 24, 455. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; Chen, B.; Wang, S.; Ma, W.; Ren, P. Robust power system state estimation with minimum error entropy unscented Kalman filter. IEEE Trans. Instrum. Meas. 2020, 69, 8797–8808. [Google Scholar] [CrossRef]
- Wang, B.; Hu, T. Semi-Supervised Minimum Error Entropy Principle with Distributed Method. Entropy 2018, 20, 968. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xing, L.; Xu, B.; Zhao, H.; Principe, J.C. Insights into the robustness of minimum error entropy estimation. IEEE Trans. Neural Netw. Learn. Syst. 2016, 29, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Li, C. Minimum total error entropy method for parameter estimation. IEEE Trans. Signal Process. 2015, 63, 4079–4090. [Google Scholar] [CrossRef]
- Kothari, P.; Kreiss, S.; Alahi, A. Human trajectory forecasting in crowds: A deep learning perspective. IEEE Trans. Intell. Transp. Syst. 2021, 23, 7386–7400. [Google Scholar] [CrossRef]
- Kim, N.; Kwon, K. Normalized Minimum Error Entropy Algorithm with Recursive Power Estimation. Entropy 2016, 18, 239. [Google Scholar] [CrossRef]
- Chen, B.; Ma, R.; Yu, S.; Du, S.; Qin, J. Granger causality analysis based on quantized minimum error entropy criterion. IEEE Signal Process. Lett. 2019, 26, 347–351. [Google Scholar] [CrossRef]
- Niknam, M.; Santos, L.F.; Cory, D.G. Experimental detection of the correlation Rényi entropy in the central spin model. Phys. Rev. Lett. 2021, 127, 080401. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; San Kim, D.; Jang, L.C.; Lee, H.; Kim, H. Representations of degenerate Hermite polynomials. Adv. Appl. Math. Mech. 2022, 139, 102359. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, J.E. The valid regions of Gram–Charlier densities with high-order cumulants. J. Comput. Appl. Math. 2022, 407, 113945. [Google Scholar] [CrossRef]
- Matsushita, R.; Brandão, H.; Nobre, I.; Da Silva, S. Differential entropy estimation with a Paretian kernel: Tail heaviness and smoothing. Phys. A Stat. Mech. Appl. 2024, 1, 129850. [Google Scholar] [CrossRef]
- Canales, C.; Galarce, C.; Rubio, F.; Pineda, F.; Anguita, J.; Barros, R.; Parragué, M.; Daille, L.K.; Aguirre, J.; Armijo, F.; et al. Testing the test: A comparative study of marine microbial corrosion under laboratory and field conditions. ACS Omega 2021, 6, 13496–13507. [Google Scholar] [CrossRef] [PubMed]
Sample Size | Average Running Time | Optimal Running Time | ||
---|---|---|---|---|
MEE | FMEE | MEE | FMEE | |
100 | 103.89 | 0.0401 | 77.77 | 0.0156 |
200 | 384.31 | 0.0580 | 310.05 | 0.0312 |
300 | 801.52 | 0.0769 | 654.21 | 0.0468 |
400 | 1430.61 | 0.1000 | 1254.12 | 0.0468 |
500 | 2306.24 | 0.1104 | 2072.50 | 0.0624 |
Sample Size | Average MSE | Optimal MSE | ||
---|---|---|---|---|
MEE | FMEE | MEE | FMEE | |
100 | 0.9108 | 1.4027 | 0.5697 | 0.6542 |
200 | 0.9311 | 1.0528 | 0.6295 | 0.7258 |
300 | 0.9573 | 1.0190 | 0.7600 | 0.7462 |
400 | 0.9696 | 0.9769 | 0.8024 | 0.7588 |
500 | 0.9604 | 0.9938 | 0.8024 | 0.8302 |
Sample Size | Average Iteration Number | Optimal Iteration Number | ||
---|---|---|---|---|
MEE | FMEE | MEE | FMEE | |
100 | 797.01 | 38.21 | 592 | 6 |
200 | 697.09 | 38.29 | 592 | 7 |
300 | 656.61 | 36.88 | 542 | 7 |
400 | 650.03 | 40.67 | 571 | 9 |
500 | 637.03 | 36.17 | 586 | 7 |
Sample Size | Average Running Time | Optimal Running Time | ||
---|---|---|---|---|
MEE | FMEE | MEE | FMEE | |
100 | 107.96 | 0.0413 | 85.24 | 0.0156 |
200 | 348.66 | 0.0635 | 270.26 | 0.0312 |
300 | 800.50 | 0.0819 | 727.45 | 0.0468 |
400 | 1431.34 | 0.1027 | 1274.87 | 0.0624 |
500 | 2179.33 | 0.1178 | 1952.27 | 0.0624 |
Sample Size | Average MSE | Optimal MSE | ||
---|---|---|---|---|
MEE | FMEE | MEE | FMEE | |
100 | 1.0844 | 0.9604 | 0.1584 | 0.1630 |
200 | 0.8485 | 1.1554 | 0.2654 | 0.2607 |
300 | 0.9110 | 1.2314 | 0.3140 | 0.2659 |
400 | 1.1037 | 1.0550 | 0.3672 | 0.2891 |
500 | 0.9536 | 1.0491 | 0.4995 | 0.4668 |
Sample Size | Average Iteration Number | Optimal Iteration Number | ||
---|---|---|---|---|
MEE | FMEE | MEE | FMEE | |
100 | 782.88 | 34.33 | 618 | 8 |
200 | 689.67 | 35.72 | 563 | 9 |
300 | 644.95 | 36.72 | 584 | 10 |
400 | 648.70 | 37.55 | 580 | 12 |
500 | 633.25 | 35.35 | 571 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Liao, X.; Cui, W.; Wang, Y.; Cao, H.; Guan, Q. Fast Minimum Error Entropy for Linear Regression. Algorithms 2024, 17, 341. https://doi.org/10.3390/a17080341
Li Q, Liao X, Cui W, Wang Y, Cao H, Guan Q. Fast Minimum Error Entropy for Linear Regression. Algorithms. 2024; 17(8):341. https://doi.org/10.3390/a17080341
Chicago/Turabian StyleLi, Qiang, Xiao Liao, Wei Cui, Ying Wang, Hui Cao, and Qingshu Guan. 2024. "Fast Minimum Error Entropy for Linear Regression" Algorithms 17, no. 8: 341. https://doi.org/10.3390/a17080341
APA StyleLi, Q., Liao, X., Cui, W., Wang, Y., Cao, H., & Guan, Q. (2024). Fast Minimum Error Entropy for Linear Regression. Algorithms, 17(8), 341. https://doi.org/10.3390/a17080341