The Knapsack Problem with Conflict Pair Constraints on Bipartite Graphs and Extensions
Abstract
:1. Introduction
2. Literature Review
- We present new complexity results on KPCC along with a thorough state-of-the-art review of the literature. Also, we show that KPCC and QKP are equivalent.
- When the conflict graph is a complete bipartite graph, it is shown that KPCC decomposes into two knapsack problems. As a consequence, we have new polynomially solvable (and pseudo-polynomially solvable) special cases of KPCC and have special cases of KPCC that admit FPTASs. These results are extended to more general classes of graphs that accept a blakbox oracle with special properties. On a star (which is a special bipartite graph), the problem is shown to be NP-hard.
- A new integer programming formulation that unifies and generalizes existing formulations of KPCC on general graphs is given. The strengths of the LP relaxation of this formulation and of special cases are analyzed theoretically.
- Different methods are proposed to tighten our general integer programming formulation, and these methods are compared using the general purpose solver Gurobi.
3. KPCC on Bipartite Graphs
General Bipartite Graphs
4. Integer Programming Formulations
4.1. Experimental Analysis
- Compare the relative performance of the standard KPCC formulation given in the introduction, MaxStarIP, and its variations MaxStarIPk, using the general purpose solver GUROBI.
- Study the impact of the tightness of the budget constraints on the formulations that we compare.
- Study the impact of sparsity of G on the formulations that we compare.
- Explore the heuristic value of the formulations.
4.2. Benchmark Instances
4.3. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bandyapadhyay, S. A variant of the maximum weight independent set problem. arXiv 2014, arXiv:1409.0173. [Google Scholar]
- Kalra, T.; Mathew, R.; Pal, S.P.; Pandey, V. Maximum weighted independent with a budget. In Proceedings of the Algorithms and Discrete Applied Mathematics: Third International Conference, CALDAM 2017, Sancoale, Goa, India, 16–18 February 2017; Gaur, D., Narayanaswamy, N., Eds.; Proceedings 3. Springer: Cham, Switzerland, 2017; Volume 10156, pp. 254–266. [Google Scholar]
- Milanic, M.; Monnot, J. The exact weighted independent set problem in perfect graphs and related classes. Electron. Notes Discret. Math. 2009, 35, 317–322. [Google Scholar] [CrossRef]
- Akeb, H.; Hifi, M.; Mounir, M. Local branching-based algorithms for the disjunctively constrained knapsack problem. Comput. Ind. Eng. 2011, 60, 811–820. [Google Scholar] [CrossRef]
- Hifi, M.; Michrafy, M. A reactive local search algorithm for the disjunctively constrained knapsack problem. J. Oper. Res. Soc. 2006, 57, 718–726. [Google Scholar] [CrossRef]
- Hifi, M.; Michrafy, M. Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem. Comput. Oper. Res. 2007, 34, 2657–2673. [Google Scholar] [CrossRef]
- Hifi, M.; Otmani, N. An algorithm for the disjunctively constrained knapsack problem. Int. J. Oper. Res. 2012, 13, 22–43. [Google Scholar] [CrossRef]
- Hifi, M.; Saleh, S.; Wu, L.; Chen, J. A hybrid guided neighborhood search for the disjunctively constrained knapsack problem. Cogent Eng. 2015, 2, 1068969. [Google Scholar] [CrossRef]
- Hifi, M. An iterative rounding search-based algorithm for the disjunctively constrained knapsack problem. Eng. Optim. 2014, 46, 1109–1122. [Google Scholar] [CrossRef]
- Yamada, T.; Kataoka, S.; Watanabe, K. Heuristic and exact algorithms for the disjunctively constrained knapsack problem. Inf. Process Soc. Jpn. J. 2002, 43, 2864–2870. [Google Scholar]
- Carrabs, F.; Cerrone, C.; Pentangelo, R. A multiethnic genetic approach for the minimum conflict weighted spanning tree problem. Networks 2019, 74, 134–147. [Google Scholar] [CrossRef]
- Carrabs, F.; Cerulli, R.; Pentangelo, R.; Raiconi, A. Minimum spanning tree with conflicting edge pairs: A branch-and-cut approach. Ann. Oper. Res. 2021, 298, 65–78. [Google Scholar] [CrossRef]
- Darmann, A.; Pferschy, U.; Schauer, J. Determining a minimum spanning tree with disjunctive constraints. In Lecture Notes in Computer Science; including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 414–423. [Google Scholar]
- Darmann, A.; Pferschy, U.; Schauer, J.; Woeginger, G.J. Paths, trees and matchings under disjunctive constraints. Discret. Appl. Math. 2011, 159, 1726–1735. [Google Scholar] [CrossRef]
- Elhedhli, S.; Li, L.; Gzara, M.; Naoum-Sawaya, J. A branch-and-price algorithm for the bin packing problem with conflicts. INFORMS J. Comput. 2011, 23, 404–415. [Google Scholar] [CrossRef]
- Gendreau, M.; Laport, G.; Semet, F. Heuristics and lower bounds for the bin packing problem with conflicts. Comput. Oper. Res. 2004, 31, 347–358. [Google Scholar] [CrossRef]
- Oncan, T.; Zhang, R.; Punnen, A.P. The minimum cost perfect matching problem with conflict pair constraints. Comput. Oper. Res. 2013, 40, 920–930. [Google Scholar] [CrossRef]
- Pferschy, U.; Schauer, J. The maximum flow problem with disjunctive constraints. J. Comb. Optim. 2013, 26, 109–119. [Google Scholar] [CrossRef]
- Zhang, R.; Kabadi, S.N.; Punnen, A.P. The minimum spanning tree problem with conflict constraints and its variations. Discret. Optim. 2011, 8, 191–206. [Google Scholar] [CrossRef]
- Samer, P.; Urrutia, S. A branch and cut algorithm for minimum spanning trees under conflict constraints. Optim. Lett. 2014, 9, 41–55. [Google Scholar] [CrossRef]
- Pisinger, D.; Sigurd, M. Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS J. Comput. 2007, 19, 36–51. [Google Scholar] [CrossRef]
- Sadykov, R.; Vanderbeck, F. Bin packing with conflicts: A generic branch-and-price algorithm. INFORMS J. Comput. 2013, 25, 244–255. [Google Scholar] [CrossRef]
- Fernandes-Muritiba, A.E.; Iori, M.; Malaguti, E.; Toth, P. Algorithms for the bin packing problem with conflicts. INFORMS J. Comput. 2010, 22, 401–415. [Google Scholar] [CrossRef]
- Chandra, A.K.; Hirschberg, D.S.; Wong, C.K. Approximate algorithms for the knapsack problem and its generalizations. In IBM Research Report; RC56l6; IBM T. J. Watson Research Center: New York, NY, USA, 1975. [Google Scholar]
- Nauss, R.M. The 0-1 Knapsack Problem with Multiple Choice Constraints; University of Missouri-St. Louis: St. Louis, MO, USA, 1975; (Revised in 1976). [Google Scholar]
- Ibaraki, T.; Hasegawa, T.; Teranaka, K.; Iwase, J. The multiple choice knapsack problem. J. Oper. Res. Soc. Jpn. 1978, 21, 59–93. [Google Scholar]
- Bar-Noy, A.; Bar-Yehuda, R.; Freund, A.; Naor, J.; Schieber, B. A unified approach to approximating resource allocation and scheduling. J. ACM 2001, 48, 1069–1090. [Google Scholar] [CrossRef]
- Bettinelli, A.; Cacchiani, V.; Malaguti, E. A branch-and-bound algorithm for the knapsack problem with conflict graph. INFORMS J. Comput. 2017, 29, 457–473. [Google Scholar] [CrossRef]
- Salem, M.B.; Taktak, R.; Mahjoub, A.R.; Ben-Abdallah, H. Optimization algorithms for the disjunctively constrained knapsack problem. Soft Comput. 2018, 22, 2025–2043. [Google Scholar] [CrossRef]
- Salem, M.B.; Hanafi, S.; Taktak, R.; Ben-Abdallah, H. Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem. RAIRO-Oper. Res. 2017, 51, 627–637. [Google Scholar] [CrossRef]
- Pferschy, U.; Schauer, J. The knapsack problem with conflict graphs. J. Graph Algorithms Appl. 2009, 13, 233–249. [Google Scholar] [CrossRef]
- Pferschy, U.; Schauer, J. Approximation of knapsack problems with conflict and forcing graphs. J. Comb. Optim. 2017, 33, 1300–1323. [Google Scholar] [CrossRef]
- Milanic, M.; Monnot, J. The complexity of the exact weighted independent set problem. In Combinatorial Optimization-Theoretical Computer Science: Interfaces and Perspectives; Wiley-ISTE: New York, NY, USA, 2008; pp. 393–432. [Google Scholar]
- Gabrel, V. Dantzig-Wolfe Decomposition for Linearly Constrained Stable Set Problem; hal-00116732; France 2006. Available online: https://hal.science/hal-00116732/ (accessed on 23 February 2024).
- Atamtürk, A.; Nemhauser, G.L.; Savelsbergh, M.W.P. Conflict graphs in solving integer programming problems. Eur. J. Oper. Res. 2000, 121, 40–55. [Google Scholar] [CrossRef]
- Gallo, G.; Hammer, P.; Simeone, B. Quadratic knapsack problems. In Combinatorial Optimization; Mathematical Programming Studies; Padberg, M., Ed.; Springer: Berlin, Germany, 1980; Volume 12, pp. 132–149. [Google Scholar]
- Hammer, P.L.; Hansen, P.; Simone, B. Roof duality, complementations, and persistency in quadratic 0–1 optimization. Math. Program. 1984, 28, 121–155. [Google Scholar] [CrossRef]
- Punnen, A.P. (Ed.) Introduction to QUBO. In The Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applications; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Punnen, A.P. (Ed.) The Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applications; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Deineko, V.G.; Woeginger, G.J. A well-solvable special case of the bounded knapsack problem. Oper. Res. Lett. 2011, 39, 118–120. [Google Scholar] [CrossRef]
- Bonamy, M.; Dabrowski, K.K.; Feghali, C.; Johnson, M.; Paulusma, D. Recognizing Graphs Close to Bipartite Graphs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017); Leibniz International Proceedings in Informatics; Larsen, K.G., Bodlaender, H.L., Raskin, J.-F., Eds.; Schloss Dagstuhl-Leibniz-Zentrum für Informatik GmbH: Wadern, Germany, 2017; pp. 70:1–70:14. [Google Scholar]
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman Co.: New York, NY, USA, 1979. [Google Scholar]
- Willis, W. Bounds for the Independence Number of a Graph. Master’s Thesis, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA, 2011. [Google Scholar]
- Li, J.; Lan, Y.; Chen, F.; Han, X.; Blazewicz, J. A Fast Algorithm for Knapsack Problem with Conflict Graph. Asia-Pac. J. Oper. Res. 2021, 38, 2150010. [Google Scholar] [CrossRef]
- Hansen, P. Degrés et nombre de stabilité d’un graphe. Cah. Centre Études Rech. Opér. 1975, 17, 213–220. [Google Scholar]
- Borg, P. A sharp upper bound for the independence number. arXiv 2010, arXiv:1007.5426. [Google Scholar]
- West, D. Introduction to Graph Theory, 2nd ed.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Rossi, R.; Ahmed, N. The Network Data Repository with Interactive Graph Analytics and Visualization. Proc. AAAI 2015, 29, 4292–4293. [Google Scholar] [CrossRef]
- Karapetyan, D.; Punnen, A.P.; Parkes, A.J. Markov chain methods for the bipartite Boolean quadratic programming problem. Eur. J. Oper. Res. 2017, 260, 494–506. [Google Scholar] [CrossRef]
Bound | Name | |
---|---|---|
UB1 | fractional budgeted stability number | |
UB2 | fractional stability number [43] | |
UB3 | Hansen [45] | |
UB4 | Borg [46] | |
UB5 | Kwok [47] | |
UB6 | Minimum degree [43] |
Data Set | Standard | MaxStarIP | MaxStarIP1 | MaxStarIP3 | MaxStarIP5 | MaxStarIP6 |
---|---|---|---|---|---|---|
Random Small | 3.9525 | 4.1754 | 4.3713 | 9.2690 | 8.9970 | 9.2855 |
Random Medium | 547.0358 | 546.1085 | 532.7913 | 542.4379 | 562.4661 | 540.5295 |
Random Large | 1165.9380 | 1232.1670 | 1116.0310 | 1267.2090 | 1235.8030 | 1284.1800 |
Positive Small | 0.4756 | 0.4833 | 0.4683 | 0.4874 | 0.4883 | 0.4606 |
Positive Medium | 117.7284 | 108.5378 | 112.0652 | 105.2428 | 105.8007 | 109.7333 |
Positive Large | 499.7824 | 506.0453 | 417.1473 | 418.3175 | 446.0069 | 407.9784 |
Negative Smal | 1.3642 | 1.9495 | 1.7018 | 1.9759 | 1.7312 | 1.6509 |
Negative Medium | 427.9115 | 499.4719 | 443.6538 | 431.8717 | 432.7311 | 422.1719 |
Negative Large | 1866.9380 | 1937.1970 | 1780.2640 | 1723.5700 | 1698.0620 | 1742.0950 |
Data Set | Budget | Standard | MaxStarIP | MaxStarIP1 | MaxStarIP3 | MaxStarIP5 | MaxStarIP6 |
---|---|---|---|---|---|---|---|
Random Small | very tight | 0.17025 | 0.2180 | 0.1535 | 14.48525 | 14.46275 | 14.4683 |
Random Small | tight | 0.8165 | 1.4390 | 0.98075 | 0.93225 | 0.95875 | 1.0078 |
Random Small | moderate tight | 10.871 | 10.86925 | 11.97975 | 12.3895 | 11.56975 | 12.3805 |
Random Medium | very tight | 1.2145 | 1.78725 | 1.602 | 1.89275 | 1.769 | 1.87975 |
Random Medium | tight | 24.9155 | 47.09275 | 21.021 | 51.623 | 63.196 | 37.62275 |
Random Medium | moderate tight | 1614.97725 | 1589.4455 | 1575.751 | 1573.798 | 1622.43325 | 1582.0860 |
Random Large | very tight | 5.5705 | 10.0915 | 12.59575 | 10.38025 | 10.95975 | 11.4418 |
Random Large | tight | 491.50875 | 593.444 | 484.346 | 806.51925 | 796.03675 | 837.51325 |
Random Large | moderate tight | 3000.7355 | 3092.9655 | 2851.1515 | 2984.729 | 2900.411 | 3003.5857 |
Positive Small | very tight | 0.2232 | 0.1991 | 0.2173 | 0.2155 | 0.2045 | 0.2245 |
Positive Small | tight | 0.4123 | 0.3786 | 0.4532 | 0.4936 | 0.4955 | 0.4745 |
Positive Small | moderate tight | 0.7914 | 0.8723 | 0.7345 | 0.7532 | 0.7650 | 0.6827 |
Positive Medium | very tight | 5.4561 | 4.7843 | 3.5357 | 3.6765 | 3.6857 | 3.7887 |
Positive Medium | tight | 47.9278 | 33.6848 | 35.3148 | 32.3804 | 29.4691 | 32.3991 |
Postive Medium | moderate tight | 299.8013 | 287.1443 | 297.34522 | 279.6713 | 284.2474 | 293.0122 |
Positive Large | very tight | 29.4941 | 35.5012 | 41.20824 | 45.17471 | 47.0088 | 41.72882 |
Positive Large | moderate tight | 1093.12647 | 1082.2853 | 918.3300 | 919.5976 | 959.8629 | 908.9182 |
Positive Large | tight | 376.7265 | 400.34941 | 291.9035 | 290.1800 | 331.1488 | 273.2882 |
Negative Small | very tight | 0.3973 | 0.4814 | 0.52410 | 0.5064 | 0.4745 | 0.4614 |
Negative Small | tight | 0.9173 | 1.2236 | 1.17409 | 1.2859 | 1.13911 | 1.3295 |
Negative Small | moderate tight | 2.7782 | 4.1436 | 3.4073 | 4.1354 | 3.5800 | 3.1618 |
Negative Medium | very tight | 6.5067 | 10.5179 | 7.8883 | 9.2575 | 9.2071 | 8.8704 |
Negative Medium | tight | 266.1083 | 292.6083 | 276.6429 | 274.4096 | 299.2258 | 270.0600 |
Negative Medium | moderate tight | 1011.11958 | 1195.2896 | 1046.4300 | 1011.9479 | 989.7604 | 987.5854 |
Negative Large | very tight | 721.0029 | 857.0400 | 667.3035 | 649.35523 | 666.8012 | 658.71412 |
Negative Large | tight | 2095.2776 | 2210.1188 | 2010.5912 | 1965.06882 | 1879.2935 | 1955.7835 |
Negative Large | moderate tight | 2784.5333 | 2744.4318 | 2662.8976 | 2556.2859 | 2548.0912 | 2611.7882 |
Data Set | Budget | Density | Standard | MaxStarIP | MaxStarIP1 | MaxStarIP3 | MaxStarIP5 | MaxStarIP6 |
---|---|---|---|---|---|---|---|---|
Random Small | very tight | 0.10–0.30 | 0.0657 | 0.04500 | 0.0421 | 40.7564 | 40.75 | 40.7564 |
Random Small | tight | 0.10–0.30 | 0.1957 | 0.2893 | 0.2364 | 0.2621 | 0.2986 | 0.2707 |
Random Small | moderate tight | 0.10–0.30 | 12.5571 | 12.3421 | 20.2229 | 17.135 | 17.52 | 18.2271 |
Random Small | very tight | 0.40–0.60 | 0.1557 | 0.1700 | 0.1486 | 0.1614 | 0.155 | 0.1586 |
Random Small | tight | 0.40–0.60 | 0.7914 | 1.6179 | 0.8986 | 1.0443 | 0.9907 | 1.0564 |
Random Small | moderate tight | 0.40–0.60 | 15.6157 | 15.7507 | 11.5864 | 12.2021 | 11.8821 | 12.4986 |
Random Small | very tight | 0.70–0.90 | 0.3092 | 0.4758 | 0.2892 | 0.5467 | 0.4867 | 0.4933 |
Random Small | tight | 0.70–0.90 | 1.5700 | 2.5717 | 1.945 | 1.5833 | 1.6917 | 1.8108 |
Random Small | moderate tight | 0.70–0.90 | 3.0409 | 3.1609 | 2.5527 | 5.5382 | 2.9364 | 5.3027 |
Random Medium | very tight | 0.10–0.30 | 0.3307 | 0.2493 | 0.2779 | 0.2471 | 0.2386 | 0.2421 |
Random Medium | tight | 0.10–0.30 | 1.2657 | 1.8571 | 1.6014 | 2.3179 | 1.7207 | 1.7429 |
Random Medium | moderate tight | 0.10–0.30 | 1807.6836 | 1792.2193 | 1933.2079 | 1802.3836 | 1830.6364 | 1778.0714 |
Random Medium | very tight | 0.40–0.60 | 0.91 | 0.8462 | 0.8869 | 0.8215 | 0.8654 | 0.8023 |
Random Medium | tight | 0.40–0.60 | 16.8238 | 29.1508 | 18.8531 | 21.9731 | 23.0215 | 21.1769 |
Random Medium | moderate tight | 0.40–0.60 | 2456.7877 | 2391.1946 | 2309.3023 | 2380.9877 | 2421.0185 | 2427.7085 |
Random Medium | very tight | 0.70–0.90 | 2.4708 | 4.3846 | 3.7431 | 4.7362 | 4.3208 | 4.7208 |
Random Medium | tight | 0.70–0.90 | 58.4762 | 113.75 | 44.1023 | 134.3708 | 169.5746 | 92.7085 |
Random Medium | moderate tight | 0.70–0.90 | 565.6369 | 569.3246 | 457.2462 | 520.4392 | 599.6292 | 525.4023 |
Random Large | very tight | 0.10–0.30 | 1.3021 | 1.2186 | 1.2957 | 1.1879 | 1.1857 | 1.1764 |
Random Large | tight | 0.10–0.30 | 7.3279 | 12.9400 | 8.505 | 13.2321 | 8.8986 | 9.1857 |
Random Large | moderate tight | 0.10–0.30 | 2475.0386 | 2547.7179 | 2487.0064 | 2504.4529 | 2519.53 | 2556.8364 |
Random Large | very tight | 0.40–0.60 | 4.3062 | 4.6062 | 5.6438 | 4.4131 | 4.5692 | 4.4046 |
Random Large | tight | 0.40–0.60 | 211.7485 | 328.7346 | 303.8569 | 476.9715 | 466.3538 | 451.49 |
Random Large | moderate tight | 0.40–0.60 | 3600.2546 | 3601.3262 | 3600.0577 | 3600.0585 | 3600.0546 | 3600.0592 |
Random Large | very tight | 0.70–0.90 | 11.4315 | 25.1323 | 31.7169 | 26.2469 | 27.8762 | 29.5338 |
Random Large | tight | 0.70–0.90 | 1292.6946 | 1483.3115 | 1177.2792 | 1990.3762 | 1973.4069 | 2115.5815 |
Random Large | moderate tight | 0.70–0.90 | 2967.3515 | 3171.7946 | 2494.4015 | 2886.62 | 2610.9469 | 2888.2269 |
Data Set | Budget | Density | Standard | MaxStarIP | MaxStarIP1 | MaxStarIP3 | MaxStarIP5 | MaxStarIP6 |
---|---|---|---|---|---|---|---|---|
Positive Small | very tight | Sparse | 0.2232 | 0.1991 | 0.2173 | 0.2155 | 0.2045 | 0.2245 |
Positive Small | tight | Sparse | 0.4123 | 0.3786 | 0.4532 | 0.4936 | 0.4955 | 0.4745 |
Positive Small | moderate tight | Sparse | 0.7914 | 0.8723 | 0.7345 | 0.7532 | 0.7650 | 0.6827 |
Positive Medium | very tight | Sparse | 5.4561 | 4.7843 | 3.5357 | 3.6765 | 3.6857 | 3.7887 |
Positive Medium | tight | Sparse | 47.9278 | 33.6848 | 35.3148 | 32.3804 | 29.4691 | 32.3991 |
Positive Medium | moderate tight | Sparse | 299.8013 | 287.1443 | 297.34522 | 279.6713 | 284.2474 | 293.0122 |
Positive Large | very tight | Sparse | 29.4941 | 35.5012 | 41.20824 | 45.17471 | 47.0088 | 41.72882 |
Positive Large | moderate tight | Sparse | 1093.12647 | 1082.2853 | 918.3300 | 919.5976 | 959.8629 | 908.9182 |
Positive Large | tight | Sparse | 376.7265 | 400.34941 | 291.9035 | 290.1800 | 331.1488 | 273.2882 |
Negative Small | very tight | Sparse | 0.3973 | 0.4814 | 0.52410 | 0.5064 | 0.4745 | 0.4614 |
Negative Small | tight | Sparse | 0.9173 | 1.2236 | 1.17409 | 1.2859 | 1.13911 | 1.3295 |
Negative Small | moderate tight | Sparse | 2.7782 | 4.1436 | 3.4073 | 4.1354 | 3.5800 | 3.1618 |
Negative Medium | very tight | Sparse | 6.5067 | 10.5179 | 7.8883 | 9.2575 | 9.2071 | 8.8704 |
Negative Medium | tight | Sparse | 266.1083 | 292.6083 | 276.6429 | 274.4096 | 299.2258 | 270.0600 |
Negative Medium | moderate tight | Sparse | 1011.11958 | 1195.2896 | 1046.4300 | 1011.9479 | 989.7604 | 987.5854 |
Negative Large | very tight | Sparse | 721.0029 | 857.0400 | 667.3035 | 649.35523 | 666.8012 | 658.71412 |
Negative Large | tight | Sparse | 2095.2776 | 2210.1188 | 2010.5912 | 1965.06882 | 1879.2935 | 1955.7835 |
Negative Large | moderate tight | Sparse | 2784.5333 | 2744.4318 | 2662.8976 | 2556.2859 | 2548.0912 | 2611.7882 |
Data Set | Standard | MaxStarIP | MaxStarIP1 | MaxStarIP3 | MaxStarIP5 | MaxStarIP6 |
---|---|---|---|---|---|---|
Random Small | 62 | 12 | 38 | 17 | 25 | 14 |
Random Medium | 41 | 14 | 29 | 9 | 17 | 17 |
Random Large | 41 | 6 | 21 | 6 | 15 | 11 |
Positive Small | 22 | 2 | 9 | 2 | 3 | 4 |
Positive Medium | 16 | 15 | 9 | 8 | 12 | 12 |
Positive Large | 20 | 5 | 5 | 6 | 2 | 11 |
Negative Small | 35 | 5 | 10 | 3 | 8 | 9 |
Negative Medium | 23 | 4 | 16 | 6 | 9 | 10 |
Negative Large | 15 | 1 | 3 | 4 | 8 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punnen, A.P.; Dhahan, J. The Knapsack Problem with Conflict Pair Constraints on Bipartite Graphs and Extensions. Algorithms 2024, 17, 219. https://doi.org/10.3390/a17050219
Punnen AP, Dhahan J. The Knapsack Problem with Conflict Pair Constraints on Bipartite Graphs and Extensions. Algorithms. 2024; 17(5):219. https://doi.org/10.3390/a17050219
Chicago/Turabian StylePunnen, Abraham P., and Jasdeep Dhahan. 2024. "The Knapsack Problem with Conflict Pair Constraints on Bipartite Graphs and Extensions" Algorithms 17, no. 5: 219. https://doi.org/10.3390/a17050219
APA StylePunnen, A. P., & Dhahan, J. (2024). The Knapsack Problem with Conflict Pair Constraints on Bipartite Graphs and Extensions. Algorithms, 17(5), 219. https://doi.org/10.3390/a17050219