Background Subtraction for Dynamic Scenes Using Gabor Filter Bank and Statistical Moments
Abstract
:1. Introduction
2. Theoretical Considerations
2.1. Texture Index
2.2. Gabor Filter
2.3. Statistical Moments
3. Materials and Methods
3.1. Dataset
3.2. Gabor Kernel Parameterization
3.3. Texture Level Maps
3.4. Texture Level Quantification
3.5. Segmentation Criteria
Algorithm 1: Texture analysis algorithm |
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Hou, X. Moving Detection Research of Background Frame Difference Based on Gaussian Model. In Proceedings of the 2012 International Conference on Computer Science and Service System, Nanjing, China, 11–13 August 2012; pp. 258–261. [Google Scholar] [CrossRef]
- Guo, J.; Wang, J.; Bai, R.; Zhang, Y.; Li, Y. A New Moving Object Detection Method Based on Frame-difference and Background Subtraction. IOP Conf. Ser. Mater. Sci. Eng. 2017, 242, 012115. [Google Scholar] [CrossRef]
- Srivastav, N.; Agrwal, S.L.; Gupta, S.K.; Srivastava, S.R.; Chacko, B.; Sharma, H. Hybrid object detection using improved three frame differencing and background subtraction. In Proceedings of the 7th International Conference on Cloud Computing, Data Science Engineering-Confluence, Uttar Pradesh, India, 12–13 January 2017; pp. 613–617. [Google Scholar] [CrossRef]
- Roy, S.M.; Ghosh, A. Real-Time Adaptive Histogram Min-Max Bucket (HMMB) Model for Background Subtraction. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 1513–1525. [Google Scholar] [CrossRef]
- Sajid, H.; Cheung, S.S. Universal Multimode Background Subtraction. IEEE Trans. Image Process. 2017, 26, 3249–3260. [Google Scholar] [CrossRef]
- Stauffer, C.; Grimson, W.E.L. Adaptive background mixture models for real-time tracking. In Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, USA, 23–25 June 1999; Volume 2, pp. 246–252. [Google Scholar] [CrossRef]
- Joy, F.; Vijayakumar, V. An improved Gaussian Mixture Model with post-processing for multiple object detection in surveillance video analytics. Int. J. Electr. Comput. Eng. Syst. 2022, 13, 653–660. [Google Scholar] [CrossRef]
- Yasir, M.A.; Ali, Y.H. Comparative analysis of GMM, KNN, and ViBe background subtraction algorithms applied in dynamic background scenes of video surveillance system. Eng. Technol. J. 2022, 40, 617–626. [Google Scholar] [CrossRef]
- Reyana, A.; Kautish, S.; Vibith, A.; Goyal, S. EGMM video surveillance for monitoring urban traffic scenario. Int. J. Intell. Unmanned Syst. 2023, 11, 35–47. [Google Scholar] [CrossRef]
- Cong, V.D. Extraction and classification of moving objects in robot applications using GMM-based background subtraction and SVMs. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 317. [Google Scholar] [CrossRef]
- Rakesh, S.; Hegde, N.P.; Gopalachari, M.V.; Jayaram, D.; Madhu, B.; Hameed, M.A.; Vankdothu, R.; Kumar, L.S. Moving object detection using modified GMM based background subtraction. Meas. Sens. 2023, 30, 100898. [Google Scholar] [CrossRef]
- Setyoko, B.H.; Noersasongko, E.; Shidik, G.F.; Budiman, F.; Soeleman, M.A.; Andono, P.N. Gaussian Mixture Model in Dynamic Background of Video Sequences for Human Detection. In Proceedings of the 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 8 December 2022; pp. 595–600. [Google Scholar]
- Aslam, N.; Kolekar, M.H. A Probabilistic Approach for Detecting Human Motion in Video Sequence using Gaussian Mixture Model. In Proceedings of the 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 24–25 June 2022; pp. 1–6. [Google Scholar]
- Bhavani, K.D.; Ukrit, M.F. Human Fall Detection using Gaussian Mixture Model and Fall Motion Mixture Model. In Proceedings of the 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA), Tamil Nadu, India, 3–5 August 2023; pp. 1814–1818. [Google Scholar]
- Chetouane, A.; Mabrouk, S.; Jemili, I.; Mosbah, M. Vision-based vehicle detection for road traffic congestion classification. Concurr. Comput. Pract. Exp. 2022, 34, e5983. [Google Scholar] [CrossRef]
- Indu, T.; Shivani, Y.; Reddy, A.; Pradeep, S. Real-time Classification and Counting of Vehicles from CCTV Videos for Traffic Surveillance Applications. Turk. J. Comput. Math. Educ. 2023, 14, 684–695. [Google Scholar]
- Boyat, A.; Joshi, B.K. A Review Paper: Noise Models in Digital Image Processing. Signal Image Process. Int. J. 2015, 6, 63–75. [Google Scholar] [CrossRef]
- Mahmoudpour, S.; Kim, M. Robust foreground detection in sudden illumination change. Electron. Lett. 2016, 52, 441–443. [Google Scholar] [CrossRef]
- Amitha, V.; Behera, R.K.; Vinuchackravarthy, S.; Krishnan, K. Background Modelling from a Moving Camera. Procedia Comput. Sci. 2015, 58, 289–296. [Google Scholar]
- Davy, A.; Desolneux, A.; Morel, J. Detection of Small Anomalies on Moving Background. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2015–2019. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, J.; Zhang, B.; Xu, D. Background modeling methods in video analysis: A review and comparative evaluation. CAAI Trans. Intell. Technol. 2016, 1, 43–60. [Google Scholar] [CrossRef]
- Milla, J.M.; Toral, S.L.; Vargas, M.; Barrero, F.J. Dual-rate background subtraction approach for estimating traffic queue parameters in urban scenes. IET Intell. Transp. Syst. 2013, 7, 122–130. [Google Scholar] [CrossRef]
- Subudhi, B.N.; Ghosh, S.; Nanda, P.K.; Ghosh, A. Moving object detection using spatio-temporal multilayer compound Markov Random Field and histogram thresholding based change detection. Multimed. Tools Appl. 2017, 76, 1573–7721. [Google Scholar] [CrossRef]
- Bouwmans, T.; Silva, C.; Marghes, C.; Zitouni, M.S.; Bhaskar, H.; Frelicot, C. On the role and the importance of features for background modeling and foreground detection. Comput. Sci. Rev. 2018, 28, 26–91. [Google Scholar] [CrossRef]
- Jing, G.; Siong, C.E.; Rajan, D. Foreground motion detection by difference-based spatial temporal entropy image. In Proceedings of the 2004 IEEE Region 10 Conference TENCON 2004, Chiang Mai, Thailand, 21–24 November 2004; Volume 1, pp. 379–382. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, C.; Duan, H. An In-Car Objects Detection Algorithm Based on Improved Spatial-Temporal Entropy Image. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 23–25 October 2020; pp. 55–59. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Hu, Z.; Huang, T. Selective Eigenbackground for Background Modeling and Subtraction in Crowded Scenes. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 1849–1864. [Google Scholar] [CrossRef]
- Ziubiński, P.; Garbat, P.; Zawistowski, J. Local Eigen Background Substraction. In Image Processing and Communications Challenges; Springer: Berlin/Heidelberg, Germany, 2014; Volume 233, pp. 199–204. [Google Scholar] [CrossRef]
- Shah, N.; Píngale, A.; Patel, V.; George, N.V. An adaptive background subtraction scheme for video surveillance systems. In Proceedings of the 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 18–20 December 2017; pp. 13–17. [Google Scholar] [CrossRef]
- Amintoosi, M.; Farbiz, F. Eigenbackground Revisited: Can We Model the Background with Eigenvectors? J. Math. Imaging Vis. 2022, 64, 463–477. [Google Scholar] [CrossRef]
- Maddalena, L.; Petrosino, A. The SOBS algorithm: What are the limits? In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 21–26. [Google Scholar] [CrossRef]
- Maddalena, L.; Petrosino, A. Self-organizing background subtraction using color and depth data. Multimed. Tools Appl. 2018, 78, 11927–11948. [Google Scholar] [CrossRef]
- Lu, S.; Ma, X. Adaptive random-based self-organizing background subtraction for moving detection. Int. J. Mach. Learn. Cybern. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Brunton, B.W.; Johnson, L.A.; Ojemann, J.G.; Kutz, J.N. Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 2016, 258, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Takeishi, N.; Kawahara, Y.; Yairi, T. Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition. In Proceedings of the NIPS, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Le Clainche, S.; Vega, J.M. Higher Order Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst. 2017, 16, 882–925. [Google Scholar] [CrossRef]
- Towne, A.; Schmidt, O.T.; Colonius, T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 2018, 847, 821–867. [Google Scholar] [CrossRef]
- Zhang, H.; Rowley, C.W.; Deem, E.A.; Cattafesta, L.N. Online Dynamic Mode Decomposition for Time-Varying Systems. SIAM J. Appl. Dyn. Syst. 2019, 18, 1586–1609. [Google Scholar] [CrossRef]
- Pendergrass, S.; Brunton, S.L.; Kutz, J.N.; Erichson, N.B.; Askham, T. Dynamic Mode Decomposition for Background Modeling. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 1862–1870. [Google Scholar] [CrossRef]
- Isik, S.; Özkan, K.; Günal, S.; Ömer Nezih, G. SWCD: A sliding window and self-regulated learning-based background updating method for change detection in videos. J. Electron. Imaging 2018, 27, 023002. [Google Scholar] [CrossRef]
- Nebili, W.; Farou, B.; Seridi, H. Background subtraction using Artificial Immune Recognition System and Single Gaussian (AIRS-SG). Multimed. Tools Appl. 2020, 79, 26099–26121. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Liu, M.; Wu, L.; Zhu, L.; Huang, Z.; Xue, X.; Tian, L. Historical Dynamic Mapping of Eucalyptus Plantations in Guangxi during 1990–2019 Based on Sliding-Time-Window Change Detection Using Dense Landsat Time-Series Data. Remote Sens. 2024, 16, 744. [Google Scholar] [CrossRef]
- Hong, S.; Vatsavai, R.R. Sliding Window-based Probabilistic Change Detection for Remote-sensed Images. Procedia Comput. Sci. 2016, 80, 2348–2352. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Chen, F.; Zhu, P.; Chen, L. Sliding window change point detection based dynamic network model inference framework for airport ground service process. Knowl.-Based Syst. 2022, 238, 107701. [Google Scholar] [CrossRef]
- Barnich, O.; Van Droogenbroeck, M. ViBe: A Universal Background Subtraction Algorithm for Video Sequences. IEEE Trans. Image Process. 2011, 20, 1709–1724. [Google Scholar] [CrossRef]
- Hayat, M.A.; Yang, G.; Iqbal, A.; Saleem, A.; hussain, A.; Mateen, M. The Swimmers Motion Detection Using Improved VIBE Algorithm. In Proceedings of the 2019 International Conference on Robotics and Automation in Industry (ICRAI), Montreal, QC, Canada, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Zhao, Q. Adaptive ViBe Algorithm Based on Pearson Correlation Coefficient. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 4885–4889. [Google Scholar] [CrossRef]
- Qu, Z.; Yi, W.; Zhou, R.; Wang, H.; Chi, R. Scale Self-Adaption Tracking Method of Defog-PSA-Kcf Defogging and Dimensionality Reduction of Foreign Matter Intrusion Along Railway Lines. IEEE Access 2019, 7, 126720–126733. [Google Scholar] [CrossRef]
- Jiang, S.; Gao, Y.; Wang, C.; Qi, J.; Cheng, L.; Zhang, X. Background Subtraction Algorithm Based on Combination of Grabcut and Improved ViBe. In Proceedings of the 2020 International Conference on Control, Robotics and Intelligent System, Xiamen, China, 27–29 October 2020; pp. 49–54. [Google Scholar] [CrossRef]
- Goyal, K.; Singhai, J. Review of background subtraction methods using Gaussian mixture model for video surveillance systems. Artif. Intell. Rev. 2017, 50, 241–259. [Google Scholar] [CrossRef]
- Dong, E.; Han, B.; Jian, H.; Tong, J.; Wang, Z. Moving target detection based on improved Gaussian mixture model considering camera motion. Multimed. Tools Appl. 2019, 79, 7005–7020. [Google Scholar] [CrossRef]
- Sakkos, D.; Shum, H.P.; Ho, E.S. Illumination-based data augmentation for robust background subtraction. In Proceedings of the 2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), Island of Ulkulhas, Maldives, 26–28 August 2019; pp. 1–8. [Google Scholar]
- Lim, L.A.; Keles, H.Y. Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recognit. Lett. 2018, 112, 256–262. [Google Scholar] [CrossRef]
- Lim, L.A.; Keles, H.Y. Learning multi-scale features for foreground segmentation. Pattern Anal. Appl. 2020, 23, 1369–1380. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Cross, G.R.; Jain, A.K. Markov Random Field Texture Models. IEEE Trans. Pattern Anal. Mach. Intell. 1983, 5, 25–39. [Google Scholar] [CrossRef]
- Trussell, H.; Lin, J.; Shamey, R. Effects of texture on color perception. In Proceedings of the 2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis, Ithaca, NY, USA, 16–17 June 2011; pp. 7–11. [Google Scholar] [CrossRef]
- Liu, L.; Chen, J.; Zhao, G.; Fieguth, P.; Chen, X.; Pietikäinen, M. Texture Classification in Extreme Scale Variations Using GANet. IEEE Trans. Image Process. 2019, 28, 3910–3922. [Google Scholar] [CrossRef]
- Zhao, G.; Pietikainen, M. Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 915–928. [Google Scholar] [CrossRef]
- Kim, J.; Um, S.; Min, D. Fast 2D Complex Gabor Filter With Kernel Decomposition. IEEE Trans. Image Process. 2018, 27, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Moreyra, M.; Gerling Konrad, S.; Masson, F. La orientación de la textura como evidencia para la detección de caminos laterales en imágenes. In Proceedings of the 2014 IEEE Biennial Congress of Argentina (ARGENCON), San Carlos de Barloche, Argentina, 11–13 June 2014; pp. 316–321. [Google Scholar] [CrossRef]
- Viedma, C. Estadisticos de forma. In Estadística descriptiva e inferencial y una introducción al método científico; IDT: Madrid, Spain, 2015. [Google Scholar]
- Majecka, B. Statistical Models of Pedestrian Behaviour in the Forum. Master’s Thesis, University of Edinburgh, Edinburgh, UK, 2009. [Google Scholar]
- Ferryman, J.; Ellis, A. PETS2010: Dataset and Challenge. In Proceedings of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, MA, USA, 29 August–1 September 2010; pp. 143–150. [Google Scholar] [CrossRef]
- Wang, Y.; Jodoin, P.; Porikli, F.; Konrad, J.; Benezeth, Y.; Ishwar, P. CDnet 2014: An Expanded Change Detection Benchmark Dataset. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 393–400. [Google Scholar] [CrossRef]
- Romero González, J.A. Análisis de la dinámica de movimiento de objetos utilizando descriptores generales y estructurales. Ph.D. Thesis, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico, 2023. [Google Scholar]
- Benezeth, Y.; Jodoin, P.M.; Emile, B.; Laurent, H.; Rosenberger, C. Comparative study of background subtraction algorithms. J. Electron. Imaging 2010, 19, 033003. [Google Scholar] [CrossRef]
- Powers, D. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. Mach. Learn. Technol. 2008, 2, 37–63. [Google Scholar]
Statistics | ||||
---|---|---|---|---|
Images evaluated per scene | 1200 | 1700 | 2050 | 1099 |
Average (frames/second) | 4.70 | 3.65 | 3.95 | 3.95 |
Standard deviation (frames/second) | 1.26 | 1.12 | 1.24 | 1.44 |
Minimum (frames/second) | 2.73 | 1.95 | 2.14 | 2.37 |
25% (frames/second) | 4.08 | 3.21 | 3.36 | 3.41 |
50% (frames/second) | 4.40 | 3.37 | 3.56 | 3.61 |
75% (frames/second) | 4.70 | 3.57 | 3.93 | 3.79 |
Maximum (frames/second) | 8.40 | 7.19 | 7.69 | 8.31 |
Method | S3 | S4 | S5 | S6 |
---|---|---|---|---|
Image | ||||
Groundtruth | ||||
DEU | ||||
DMD | ||||
DSTEI | ||||
Eigen-Background Subtraction | ||||
GMM | ||||
MRFMD | ||||
SOBS | ||||
SWCD | ||||
ViBe | ||||
GMBSM |
Method | Parameters | |||||
---|---|---|---|---|---|---|
DSTEI | ||||||
Eigen Background | ||||||
MRFMD | ||||||
SOBS | ||||||
SWCD | ||||||
ViBe | ||||||
DMD | ||||||
DEU | ||||||
GMM | ||||||
GMBSM |
Method | Sensibility | Specificity | FPR | FNR | PWC | Precision | F1 Measure |
---|---|---|---|---|---|---|---|
DEU | 0.274 | 0.984 | 0.016 | 0.726 | 0.301 | 0.144 | 0.188 |
DMD | 0.875 | 0.990 | 0.010 | 0.125 | 1.108 | 0.472 | 0.613 |
DSTEI | 0.658 | 0.984 | 0.016 | 0.342 | 1.751 | 0.122 | 0.206 |
EigenBS | 0.437 | 0.991 | 0.009 | 0.563 | 2.151 | 0.546 | 0.486 |
GMM | 0.929 | 0.991 | 0.009 | 0.071 | 0.989 | 0.507 | 0.656 |
MRFMD | 0.735 | 0.983 | 0.017 | 0.265 | 1.775 | 0.071 | 0.130 |
SDBE | 0.830 | 0.992 | 0.008 | 0.170 | 1.024 | 0.565 | 0.673 |
SOBS | 0.929 | 0.991 | 0.009 | 0.071 | 0.994 | 0.504 | 0.654 |
SWCD | 0.890 | 0.997 | 0.003 | 0.110 | 0.451 | 0.865 | 0.877 |
ViBe | 0.883 | 0.992 | 0.008 | 0.117 | 0.949 | 0.565 | 0.689 |
GMBSM | 0.738 | 0.994 | 0.006 | 0.262 | 1.059 | 0.668 | 0.701 |
Method | Sensibility | Specificity | FPR | FNR | PWC | Precision | F1 Measure |
---|---|---|---|---|---|---|---|
DEU | 0.285 | 0.981 | 0.019 | 0.715 | 2.667 | 0.140 | 0.187 |
DMD | 0.859 | 0.991 | 0.009 | 0.141 | 1.127 | 0.585 | 0.696 |
DSTEI | 0.620 | 0.980 | 0.020 | 0.380 | 2.103 | 0.119 | 0.199 |
EigenBS | 0.364 | 0.991 | 0.009 | 0.636 | 3.190 | 0.596 | 0.452 |
GMM | 0.793 | 0.993 | 0.007 | 0.207 | 1.086 | 0.686 | 0.736 |
MRFMD | 0.912 | 0.991 | 0.009 | 0.088 | 1.027 | 0.591 | 0.717 |
SDBE | 0.688 | 0.979 | 0.021 | 0.312 | 2.130 | 0.062 | 0.113 |
SOBS | 0.817 | 0.992 | 0.008 | 0.183 | 1.129 | 0.628 | 0.710 |
SWCD | 0.914 | 0.991 | 0.009 | 0.086 | 0.999 | 0.604 | 0.727 |
ViBe | 0.878 | 0.998 | 0.002 | 0.122 | 0.508 | 0.893 | 0.886 |
GMBSM | 0.856 | 0.99 | 0.008 | 0.144 | 0.993 | 0.660 | 0.746 |
Method | Sensibility | Specificity | FPR | FNR | PWC | Precision | F1 Measure |
---|---|---|---|---|---|---|---|
DEU | 0.380 | 0.956 | 0.043 | 0.619 | 10.821 | 0.525 | 0.440 |
DMD | 0.393 | 0.922 | 0.078 | 0.607 | 8.648 | 0.080 | 0.133 |
DSTEI | 0.598 | 0.935 | 0.065 | 0.402 | 7.637 | 0.238 | 0.341 |
EigenBS | 0.900 | 0.922 | 0.078 | 0.100 | 7.844 | 0.060 | 0.113 |
GMM | 0.940 | 0.969 | 0.031 | 0.060 | 3.308 | 0.642 | 0.763 |
MRFMD | 0.986 | 0.943 | 0.057 | 0.014 | 5.585 | 0.331 | 0.495 |
SDBE | 0.919 | 0.920 | 0.080 | 0.081 | 8.000 | 0.038 | 0.073 |
SOBS | 0.710 | 0.931 | 0.069 | 0.290 | 7.391 | 0.183 | 0.291 |
SWCD | 0.999 | 0.974 | 0.026 | 0.001 | 2.478 | 0.701 | 0.824 |
ViBe | 0.927 | 0.993 | 0.007 | 0.073 | 1.268 | 0.920 | 0.923 |
GMBSM | 0.827 | 0.988 | 0.012 | 0.172 | 0.578 | 0.863 | 0.901 |
Method | Sensibility | Specificity | FPR | FNR | PWC | Precision | F1 Measure |
---|---|---|---|---|---|---|---|
DEU | 0.318 | 0.949 | 0.051 | 0.682 | 6.173 | 0.096 | 0.148 |
DMD | 0.742 | 0.958 | 0.042 | 0.258 | 4.618 | 0.260 | 0.385 |
DSTEI | 0.645 | 0.949 | 0.051 | 0.355 | 5.340 | 0.088 | 0.155 |
EigenBS | 0.619 | 0.978 | 0.022 | 0.381 | 4.211 | 0.630 | 0.625 |
GMM | 0.985 | 0.956 | 0.044 | 0.015 | 4.317 | 0.227 | 0.369 |
MRFMD | 0.732 | 0.947 | 0.053 | 0.268 | 5.413 | 0.042 | 0.079 |
SDBE | 0.576 | 0.956 | 0.044 | 0.424 | 5.227 | 0.227 | 0.326 |
SOBS | 0.997 | 0.979 | 0.021 | 0.003 | 2.016 | 0.640 | 0.779 |
SWCD | 0.927 | 0.993 | 0.007 | 0.073 | 1.054 | 0.879 | 0.903 |
ViBe | 0.977 | 0.978 | 0.022 | 0.023 | 2.245 | 0.611 | 0.752 |
GMBSM | 0.829 | 0.991 | 0.008 | 0.171 | 0.271 | 0.736 | 0.780 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-González, J.-A.; Córdova-Esparza, D.-M.; Terven, J.; Herrera-Navarro, A.-M.; Jiménez-Hernández, H. Background Subtraction for Dynamic Scenes Using Gabor Filter Bank and Statistical Moments. Algorithms 2024, 17, 133. https://doi.org/10.3390/a17040133
Romero-González J-A, Córdova-Esparza D-M, Terven J, Herrera-Navarro A-M, Jiménez-Hernández H. Background Subtraction for Dynamic Scenes Using Gabor Filter Bank and Statistical Moments. Algorithms. 2024; 17(4):133. https://doi.org/10.3390/a17040133
Chicago/Turabian StyleRomero-González, Julio-Alejandro, Diana-Margarita Córdova-Esparza, Juan Terven, Ana-Marcela Herrera-Navarro, and Hugo Jiménez-Hernández. 2024. "Background Subtraction for Dynamic Scenes Using Gabor Filter Bank and Statistical Moments" Algorithms 17, no. 4: 133. https://doi.org/10.3390/a17040133
APA StyleRomero-González, J. -A., Córdova-Esparza, D. -M., Terven, J., Herrera-Navarro, A. -M., & Jiménez-Hernández, H. (2024). Background Subtraction for Dynamic Scenes Using Gabor Filter Bank and Statistical Moments. Algorithms, 17(4), 133. https://doi.org/10.3390/a17040133