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Abstract: This paper introduces a novel background subtraction method that utilizes texture-level
analysis based on the Gabor filter bank and statistical moments. The method addresses the challenge
of accurately detecting moving objects that exhibit similar color intensity variability or texture to the
surrounding environment, which conventional methods struggle to handle effectively. The proposed
method accurately distinguishes between foreground and background objects by capturing different
frequency components using the Gabor filter bank and quantifying the texture level through statistical
moments. Extensive experimental evaluations use datasets featuring varying lighting conditions,
uniform and non-uniform textures, shadows, and dynamic backgrounds. The performance of the
proposed method is compared against other existing methods using metrics such as sensitivity,
specificity, and false positive rate. The experimental results demonstrate that the proposed method
outperforms other methods in accuracy and robustness. It effectively handles scenarios with complex
backgrounds, lighting changes, and objects that exhibit similar texture or color intensity as the
background. Our method retains object structure while minimizing false detections and noise. This
paper provides valuable insights into computer vision and object detection, offering a promising
solution for accurate foreground detection in various applications such as video surveillance and
motion tracking.

Keywords: background modeling; Gabor filter bank; statistical moments; texture description

1. Introduction

The study of background subtraction for moving object detection is an active research
area divided into two main paradigms: modeling the scene with stationary and non-
stationary objects. Traditionally, methods found in the literature try to create groupings of
space-time regions that present coherence in the movement to discern between the model
representing the scene and non-stationary objects.

There are several challenges in posing the detection problem as a motion segmentation
problem. The most straightforward approach is based on translational motion, in which
two frames are compared [1–3]. This method is highly adaptable to dynamic changes in the
scene but generally leads to poor results due to incorrect motion detection and not detecting
uniform regions of the objects, which contain relevant information for segmentation.

Moreover, probabilistic models set the object as the detection of outliers in motion [4–6].
These methods use pixel statistics to update and maintain background model information
and compare it with the statistical data of moving objects. Probabilistic models are increas-
ingly used for their reliability in scenarios where shadows, noise, and lighting changes are
present. Even so, they assume that the movement changes are relatively small compared to
the scene. So, if the statistical information does not come from the background, the problem
becomes more challenging.
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These models are capable of modeling variability in video sequences, which is why
they have been widely used primarily in applications of video surveillance [7–9], moving
object detection [10,11], human detection [12–14], and vehicle detection for traffic [15,16],
among others.

The ability of the method to reduce the influence of noise [17], shadows, changes
in lighting [18], changes in the structure of the object [19], or textures [20] depends on
the robustness of the algorithm [21]. Although there are many concepts for background
modeling or foreground detection, algorithms dedicated to solving all these situations
increase their complexity, so the focus of actual methods is to solve more specific problems.
Some solutions to these problems are described below.

Σ∆ Background Estimation (Σ∆). In the method proposed by [22], a variance estimator
is used to understand the variability of pixel intensity. This estimator is used as a threshold.
Then, their intensity fluctuations are compared to update the background to a temporal
dispersion. Some limitations are the inefficiency of detecting moving objects in complex
or very dense backgrounds and temporarily settled objects; these objects are quickly
incorporated into the background model.

Markov Random Field-Based Motion Detection (MRFMD). This method, introduced
by [23], divides the image into several regions to segment it spatially. In the Markov model,
the color distribution, temporal color coherence, and edge map in the time frame are used to
determine a moving object’s spatial direction, color characteristics, and temporal direction.
The advantage of this model is to preserve edges to improve object detection with fewer
contour effects.

Difference-Based Spatio-Temporal Entropy Image (DSTEI). As described in [24–26],
changes in pixel intensities are considered as energy. Moving objects produce more energy,
so a normalized histogram is calculated for the area in the image to obtain the frequency of
intensity changes. Finally, color information is quantified with the scalar product between
the logarithm of the frequency vector and the frequency vector. The advantage of this
method is its robustness to gradients, but it is susceptible to false detections, such as sudden
changes in shadows or lighting.

Eigen-Background Subtraction. This technique is used by many authors, such as [27–29].
Here, the background is represented by a reconstructed image from a set of dominant
eigenvectors. Then, only the difference between the current image and the reconstructed
image is calculated to find the foreground object. In response to this idea in [30], using
the least essential feature vector as an alternative solution and improving the background
model representation is recommended.

Simplified Self-Organized Background Subtraction (SOBS). In this model, each color
pixel is mapped to a neural map of n segments. This map is the background model,
and each current pixel is evaluated to find the best match. That is, the Euclidean distance
is used to find the minimum distance between the intensity of the current color and the
neural map [31–33]. The advantage of this model is to adapt to gradual lighting changes
or dynamic backgrounds. Even so, the shadow cast by the object will be detected and
included in the reconstructed background model.

Dynamic Mode Decomposition (DMD). Despite being a method used to analyze the
behavior of fluids [34–38], ref. [39] used it for image analysis, considering a video sequence
as a dynamic fluid. A matrix decomposition is carried out from the image sequences,
which will be propagated to a matrix, from which the singular value decomposition is
obtained. The eigenvectors of this decomposition are dynamic patterns, and the values
represent the temporal dynamics of these patterns. This technique allows fast and scalable
decomposition of video sequences.

Sliding Window-Based Change Detection (SWCD). It was introduced by [40]. Among
them, the dynamic changes of pixel intensity are detected and adjusted to the background
image. In addition, this approach features a sliding window and dynamic control to update
the background image and perform background subtraction. According to the authors, this
method overcomes intermittent changes in lighting, camera vibration, and moving objects.
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However, removing misclassified pixels depends on the window size [41]. This method
is applied in various studies, including the analysis of eucalyptus plantation [42], change
detection on the Earth’s surface [43], and the dynamic inference of airport flight ground
service networks [44].

A universal background subtraction algorithm (ViBe). This method was proposed
by [45] and has been widely used in scenes with dynamic background [46], camera move-
ment [47], or foggy scene [48], because of its easy implementation and high efficiency.
The proposal consists of storing a set of past values for each neighborhood pixel. Then,
the set is compared to determine if each pixel belongs to the background model or if the
model must be adapted to these changes. Finally, the neighboring pixels are evaluated
when the pixel is classified as the background. However, ref. [49] identifies problems such
as the ghost effect, sensitivity to shadows, or sensitivity to the target’s movement speed.

Gaussian Mixture Model (GMM). This method was introduced by [6]. It has been
widely accepted in the literature [50] and is one of the primary references because it is a
powerful tool for grouping. Generally, this method characterizes each newly observed
pixel value as a Gaussian mixture representing the background pattern. If the observed
pixels do not match any Gaussian distribution, the distribution with the least probability
is replaced by the new parameter. However, there are difficulties with shadows, irregular
background motion, objects that stop suddenly, or objects that maintain a similar intensity
to the background. Nevertheless, the model has been proven to be stable outdoors and
reliable for light or long-term changes in the scene [51].

Euclidean distance (DEU). It is a simple background model where moving objects
can be detected with the Euclidean distance measure. The lighting changes are updated
iteratively with the previous image as the background model. However, it is not robust in
the face of changes in light, stationary objects, shadows, and ghost effects [52].

Deep Learning Methods. In recent years, the adoption of deep learning techniques
for computer vision applications has surged due to their successful implementation. Con-
sequently, researchers have transitioned from conventional to deep learning models for
background subtraction. Convolutional neural networks (CNNs) were introduced for
background subtraction in 2016 [33]. Trained in a supervised way, the CNNs used in back-
ground subtraction are categorized into basic CNN, multi-scale and cascaded CNNs, fully
CNNs, deep CNNs, 3D-CNNs, and structured CNNs [21]. Deep learning-based methods
such as FgSegNet [53,54] and its variants represent the field’s current state; however, their
supervised nature relies on the availability of large amounts of data for training.

This paper proposes a background subtraction method based on local texture analysis.
We assume that the discrete topological surface of the scene satisfies a specific frequency
and direction of the Gabor filter bank. The Gabor filter is a linear filter mainly used for
texture analysis and discrimination. In its two-dimensional representation, it is a Gaussian
kernel function modulated by a sine wave, characterized by the parameters λ, σx, σy, θ and
ϕ. In this work, we use it as a texture descriptor. We propose to use the magnitude and
phase of the filter to characterize the information that is not sensitive to light changes and
build a background model. Based on the results, our method maintains the invariance of
subtle changes in light. We assess computational efficiency by processing image series of
varying sizes and resolutions. Our test is run on Intel(R) Core i7-7500U CPU with 32.0 GB
RAM, achieving a processing rate of 10 frames per second. Upon repeating the experiments,
variability in the execution times for each series is observed, which is why it is decided
to carry out 30 repetitions, analyzing a total of 181,470 images. The purpose of this is to
calculate descriptive statistics, thus obtaining the following results showed in Table 1.

While the proposed method may not achieve the same level of performance as deep
learning approaches, it offers several advantages that make it a valuable alternative in
certain scenarios. For example, the method is particularly useful when the traditional
method cannot handle situations where an object’s color intensity and texture are similar
to its surroundings. The proposed method is also invariant to light changes, a common
challenge in video surveillance systems. Moreover, the proposed method is computationally
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efficient and can process video data in real time, making it a faster alternative to deep
learning approaches that require large amounts of computational resources and training
data. These advantages suggest that the proposed method may be more suitable for
real-time object detection and tracking applications, such as video surveillance systems.

Table 1. Statistical description of computational efficiency.

Statistics 640 × 480 720 × 576 360 × 240 320 × 240

Images evaluated per scene 1200 1700 2050 1099
Average (frames/second) 4.70 3.65 3.95 3.95
Standard deviation (frames/second) 1.26 1.12 1.24 1.44
Minimum (frames/second) 2.73 1.95 2.14 2.37
25% (frames/second) 4.08 3.21 3.36 3.41
50% (frames/second) 4.40 3.37 3.56 3.61
75% (frames/second) 4.70 3.57 3.93 3.79
Maximum (frames/second) 8.40 7.19 7.69 8.31

The main contributions of this work are (i) the spatio-temporal algorithm that incorpo-
rates statistical moments into the Gabor filter bank, (ii) overcoming the shadow detection
problem, and (iii) the segmentation of objects with uniform texture around the environment.

The rest of this document is organized as follows. Section 2 describes the theoretical
aspects, and Section 3 describes the experimental model, in which texture analysis and
motion detection are performed. Section 4 presents the experiments and results. Section 5
discusses the results, and Section 6 presents the conclusion and limitations of the approach.

2. Theoretical Considerations
2.1. Texture Index

An essential part of background modeling is understanding what a texture is and
how to quantify it. Although a formal definition has not yet been reported in the literature,
authors have classified it as regions composed of points, edges, ellipses, circles, or lines
called primitives. It is also defined as the intersection of random and possibly periodic
areas [55,56]. It is also defined as the color or intensity distribution [57]. According to [58],
variations in intensity, perspective, uniformity, directionality, or scale changes must also be
considered. So dealing with texture is a complex issue since it involves the characterization
of density, thickness, roughness, or intensity, both in micro and macro textures, irregular
or regular and periodical or quasi-periodic [59]. The dataset used in the experiments are
explained in Section 3.1.

Another crucial aspect to consider is acquisition noise. When the image is digitized
or sampled, noise is generated in the analog-to-digital converter due to an insufficient
quantization level. Generally, the camera sensor is 8-bit, which reduces the effective
dynamic range of the sensor, thereby producing false contours in the image that are
detected as textures.

The question is how to identify the edges that represent the texture. Because ran-
domness leads to subtle changes in intensity levels, detecting these changes can lead to
orientation measurements, in which sudden or discontinuous changes can be detected.
Generally, the texture depends on the frequency of pixel tones, directionality, and contrast.

In this work, we consider that the texture is the variability of the color pixel intensity.
This is determined by the frequency and size of the area affected by the Gaussian function
of the Gabor filter.

2.2. Gabor Filter

The Gabor filter bank is one of the functions that allow the density [60], thickness,
or directionality of sudden and subtle intensity changes [61] to be characterized and is
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suitable for texture analysis. The 2-D Gabor function is composed of an envelope function
and a carrier. The Gaussian function, commonly called the envelope, is shown in Equation (1):

Eλ,σ = η · exp

[(
− u2

2σ2
x
− v2

2σ2
y

)]
(1)

where η = 1
2πλ,σxσy

. σx and σy represent the standard deviation of the Gaussian distribution
on the x-axis and y-axis, and the parameter λ represents the filter wavelength. Then, u and
v are the Cartesian coordinates of the spatial frequency given by Equation (2):

u = x cos(θ) + y sin(θ)

v = y sin(θ)− x cos(θ)
(2)

while the carrier function is shown in Equation (3):

Cλ,ϕ = ejω (3)

where ω = 2π u
λ + ϕ.

The parameter ϕ represents the phase shift of the complex exponent. The expression
ejω can be defined as two independent functions, one corresponding to the real part (cos ω)
and the other corresponding to the imaginary part (sin ω). So, the Gabor nucleus is defined
by Equation (4)

Gλ,θ,ϕ = Eλ,σ · Cλ,ϕ (4)

This function is shown in Figure 1. According to the value of λ, different frequencies
can be obtained, and each frequency determines low–pass filter (large λ), high–pass filter
(small λ) or band–pass filter.

Figure 1. Gabor filter Gλ,θ,ϕ.

The parameters σx and σy make the Gaussian function increase or decrease in any of
its axes, which means that if the Gaussian function extends more on the x-axis than on
y-axis, and vice versa, the noise and edges will be attenuated in that axis. However, if the
Gaussian term is small, the image’s smoothness will be low, and the sine signal will obtain
fewer sampling points.
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Finally, the Gabor transformation is shown in Equation (5), which is obtained from the
convolution between the image and the Gabor nucleus:

Υ = Ii(x) ∗ Gλ,θ,ϕ. (5)

Since this function has a real number term (Υr) and a complex number term (Υc),
the amplitude Mi and the phase Pi can be obtained as shown in Equations (6) and (7):

Mi =
√

Υ2
r + Υ2

c (6)

Pi = tan−1
(

Υc
Υr

)
(7)

The terms Mi and Pi are essential because they will define the structure and texture of
the object, respectively.

2.3. Statistical Moments

Given the Mi and Pi distributions, the statistical moment r is used to observe the
variability of the distribution and calculate the standard deviation. This will allow quanti-
fying the information and distinguishing between the objects in the background and the
foreground. According to [62], the r moment is defined in Equation (8):

mr = ∑N
i=1(xi − x̄)r · Pb(Ii) (8)

where N is the total number of elements, xi is the sample values, x̄ is the arithmetic mean
of xi, Ii is the color intensity, Pb(Ii) is the probability, and the r-th moment is represented
by r. The first moment (r = 1) refers to the expected probability. The second moment is
the variance and measures the region’s smoothness. The third moment is known as bias
and is a measure of displacement; the fourth, or kurtosis provides a measure of uniformity.
Higher-order moments can also be used, but they have no representation.

3. Materials and Methods

This section describes how to perform background subtraction of our method called
GMBSM. Section 3.1 describes the dataset used and the scene’s challenges. Section 3.2
explains the construction of the Gabor kernel for texture characterization. Section 3.3 de-
scribes texture-level quantization, and Section 3.4 describes foreground detection. Figure 2
shows the process.

Figure 2. The procedure is as follows: (1) capture images from a dataset or a camera, (2) build the
Gabor kernel, (3) obtain intensities as the texture level, (4) texture-level quantization, and (5) fore-
ground detection.
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3.1. Dataset

Scene S1. We use the dataset in [63] to analyze a sequence of 500 images with 640× 480 pixels
dimensions. This scene consists of a fixed camera that can see the ground floor. According to the
author, the most notable feature is the constantly changing lighting due to the position of the sun,
artificial light sources, and shadows cast by some buildings.

Scene S2. To deepen our analysis, we extract 700 images with a size of 720× 576 pixels
from the PETS database [64]. This scene includes scattered people walking randomly in
bright, dark jackets of uniform and non-uniform textures.

Scene S3. The scene involves people walking through a train station while someone
stops and leaves an object on the floor. We choose this scene because shadows and reflec-
tions are present due to the lighting conditions. In addition, in some areas of the image,
the intensity of the background and the object’s intensity are similar. These effects cause
other models to consider that the objects and the background have the same structure.
The image size of this sequence is 720× 576 pixels.

Scene S4. The traffic flow shows some shadows on the highway from the sun’s
position. In addition, dynamic backgrounds are generated due to the movement of the
leaves. The dimensions of these images are 320× 240 pixels.

Scene S5. A man walked into the office, picked up a book, read it, and left the room in
this scene. There are some difficulties here, such as light changes and the color intensity of
the clothes relative to the background. The dimensions of these images are 360× 240 pixels.

Scene S6. This scene shows some people walking or cycling through the park. The chal-
lenge in this scene is the over-illumination and under-sampling of the sequence. The di-
mensions of these images are 360× 240 pixels.

The images of the S3 to S6 scenes are obtained from the dataset in [65].

3.2. Gabor Kernel Parameterization

The Gabor function depends on parameters λ, σx,y, ϕ and θ, which produce different
effects on the image. Both the carrier function and the envelope are in function of λ,
which means that when you have a large λ value, the frequency of the envelope is lower.
In modeling terms, the filter will attenuate objects with thin edges. However, if the lambda
is small, it will have a higher frequency, which allows the filter to attenuate coarse edges so
that more details can be visualized but with a higher sensitivity to noise.

On the other hand, σx and σy make the Gaussian term Eλ,σ large or small in some of
its axes, which means that if the Gaussian function extends more on the x-axis than on
the y-axis, and vice versa, the noise and edges on that axis will be dimmed on that axis.
However, if the Gaussian term is small, the image’s smoothness will be low and noisy.

In Figure 3, we show two distributions: (1) the Gaussian function, whose size depends
on σx,y, and (2) the relative frequencies of the Gabor filter, where the peak value both
positive and negative represent sampling points. Then, as can be seen in the figure,
the larger the image size, the higher the density of the Gaussian required. In this way,
the noise attenuation is greater. And the smaller the image size, the lower the frequency
and density required, but this response will generate more noise and possible false edges.

3.3. Texture Level Maps

Generally, a background model represents a stationary or near-stationary scene with
structured elements in an uniform area. Where the light changes of a sequence of images
Q(t) = {I1, I2, I2, ..., In} are mainly characterized and quantified, each region of Ii(x)m×n
presents a variation of intensity in the pixel values (x = [xm, yn]).

So, it is assumed that when a moving object (Ok) passes through the scene (Bk), it will
cause that scene structure to change.

In Figure 4, a scene is observed in which an object of interest (Ok) can be seen with an
intensity value similar to its surrounding environment. This fact is a problem because it is
difficult to distinguish between objects and scenes.
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Figure 3. Gabor filter size–frequency ratio. This figure shows the comparison between the size of the
envelope function (the Gaussian distribution in red) and the response of Gλ,θ,ϕ (the blue distribution)
relative to the size of the image.

Figure 4. Scene intensity levels. The image shows a scene with intensity values similar to the
moving object.

Although the intensity levels are similar, we can see that the areas on the scene are
not entirely uniform. When another object occludes the scene structure, the structure is
altered. Therefore, the distribution and direction of the texture are different. Structural
changes are detected using Equations (6) and (7), which allow us to characterize the main
frequencies of these regions and represent the structure of the perceived texture. The relative
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frequency of the Gabor filter’s three–dimensional projection corresponds to the scene’s
change. Figure 5 shows the texture detected by the filter (red segment) and the not detected
texture (blue segments).

Figure 5. Gabor kernel 3–D view.

The frequency of the uniform and non–uniform region and the frequency of the Gabor
kernel are shown in Figure 6. The maximum values, both positive and negative, represent
sampling points. And they measure the texture deformation in the object’s structure; this
effect is shown in Figure 6a. Meanwhile, Figure 6b shows when the structure is periodical,
and the frequency is similar to the Gabor filter. These structures will not be recognized
because the detected changes are not so significant that the filter will attenuate them.

(a) (b)

Figure 6. Periodic and non–periodic texture of the scene [66]: (a) non–periodic texture; (b) periodic texture.

When the Gabor filter is applied, a representation is obtained in the frequency and
orientation domain, allowing the identification and characterization of different levels and
patterns of texture. The extracted features are essentially a decomposition of the image
into components that highlight the texture levels, providing a detailed description of the
textures in different scales and orientations. The texture level map obtained is represented
in Figure 7, where a subtle change of Ok with respect to Bk is appreciated.
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Figure 7. Scene’s texture. The texture level is expressed as an edge in this image, obtained by
characterizing the image using the Gabor function.

3.4. Texture Level Quantification

To obtain a more uniform area, the r-th moment is calculated. In this way, the texture
level is quantified according to the statistical model. In Equation (9), the second statistical
moment is used because the average value provides a smooth area:

ξ(X) = [F(X)]2 · Pb(X) (9)

where ξ represents the quantized texture, F(X) ← X − X̄, X̄ is the average of the n
distributions of the Mi and Pi texture map, and X is the latest distribution of the texture map.

The resulting surface is shown in Figure 8, which reflects the distribution of moments in
the scene. While the scene distribution appears almost homogeneous, the object distribution
shows a greater dispersion in its surroundings, so it is now possible to compare the data
variability. According to these distributions, the movement can be detectable.

Figure 8. Distributions of the statistical moments in the scene. Objects Ok show a greater dispersion,
while Bk remains more homogeneous.

3.5. Segmentation Criteria

Finally, a threshold is chosen to distinguish between stationary (Bk) and non–stationary
objects (Ok) because the scene now exhibits the distribution shown in Figure 9.
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Figure 9. The typical deviation of the quantified texture. The standard deviation (σ) is taken as the
segmentation threshold.

The objects that are in motion can be located from ±σ. In this sense, σ represents
the threshold of stationary objects, which is between [−σ, σ], and moving objects can be
determined between (±σ,±∞). Therefore, kσ is a function of the confidence interval of the
texture distribution we want to compare.

The steps of the background subtraction algorithm are summarized in Algorithm 1.
It should be noted that the analysis is based on the texture of the object, the real term of
the filter is used to obtain the object’s structure, and the filter’s imaginary term explains
the texture in detail. If there are subtle changes, they can be modeled with any Gabor
filter frequency.

Algorithm 1: Texture analysis algorithm
Input : Ii, λ, σx,y, θ, ϕ

G(λ, [σx, σy], θ, ϕ) ; /* Build Kernel */
[h, w]← size(imgIn);
M← size(h, w);
P← size(h, w);
while I ∈ Q do

[Υr, Υc]← Ii ∗ Gλ,θ,ϕ;

Mi ← Magnitude(Υr, Υc);
Pi ← argmax(Υr, Υc);
X ← Mi, Pi;
ξ(X)← [X− X̄]2 · Pb(X);

if ξ ∈ [−σ, σ] then
ξ ∈ Bk;

else
ξ ∈ Ok;

end
end

4. Results

This section presents the experimental results of the proposed method. The first
experiments consist of adjusting the filter parameters to characterize the light changes in
the texture, that is, the number of details in the image that will be used for object analysis,
so it is important to adjust the frequency value because an excess of texture may not be as
relevant when performing the analysis.

Figure 10 shows the results of the level texture analysis of the scene S1, where both
the object and the background distributions are similar. The parameters or this scene are
σx = 3 and σy = 3, ϕ = 0 and 24 orientations with an angular displacement of 15.
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Figure 10. Homogeneous region segmentation by texture analysis.

The result below corresponds to scene S2. Different values for λ are used to enhance
the texture of people (Figure 11b), to enhance the texture of the floor (Figure 11c), and to
enhance the edges of buildings (Figure 11d). The influence of these λ values can be seen in
Figure 11. The parameters that characterize this scene are as follows: Gaussian function
value σx = 3.35 and σy = 1.675, while ϕ = 0. In addition, 24 orientations with an angular
displacement of 15 degrees are used.

(a) Original image (b) Object detection (c) Floor texture detection (d) Building edges detection

Figure 11. Adjustment of the λ value to characterize the light changes of objects on the scene.
(a) Original image, in (b) λ = 0.95, (c) λ = 0.6, (d) λ = 0.367.

We try to focus on the object’s structure, the texture of the object’s clothes, and the
object’s edge. The results are shown in Figure 12.

(a) Original image (b) Structure detection (c) Texture detection (d) Edge detection

Figure 12. Adjustment of the λ value to focus on the structure, texture and edge of the object. In
(a) original image, in (b) λ = 3, for (c) λ = 1.2 y and (d) λ = 0.5.

The parameter values of the Gaussian function used are σx = 6.25, σy = 1.45,
and ϕ = 0. Focusing on analyzing different scene levels can reduce the amount of data and
only focus on the specific object information. According to the displayed results, adjusting
the λ value allows the filter to attenuate light changes so that the texture of objects on
different levels can be specified to segment them.
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We analyze sequences of 900 images for each activity, and the results from our proposal
are compared with other methods, such as Σ∆ [22], DMD [39], MRFMD [23], DSTEI [26],
Eigen-Background [30], SOBS [33], SWCD [40], ViBe [47], GMM [51] and DEU [67]. The
results analysis can be seen in Table 2.

Table 2. Comparison of the results of background subtraction methods.

Method S3 S4 S5 S6

Image

Groundtruth

DEU

DMD

DSTEI

Eigen-Background
Subtraction

GMM

MRFMD

Σ∆

SOBS

SWCD

ViBe

GMBSM
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According to the results, in S3, the proposed method helps to reduce the effects
produced by shadows while preserving most of the structure, but a value of λ = 1.5 causes
the filter to be susceptible to noise, and objects that are not in motion can be seen. In S4,
the vehicle structure is preserved, but the disadvantage is that the light changes of the
leaves are detected as a movement. In scenario S5, unlike the other methods, our proposal
can obtain a large part of the object structure without noise or deformations. Finally, in S6,
there is an acquisition error because the speed of movement of the cyclist is greater than
the speed of acquisition of the images, so the cyclist is not clearly seen. Nevertheless, we
obtained good results because the complete structure of the cyclist can be appreciated
regardless of the shadow and noise; classic noise reduction methods can minimize noise
reduction and residual. The morphological closing method can be applied to obtain a
complete object structure if necessary.

The parameters used in each model are shown in Table 3, which were reported by
each author so that each model maintains the best performance of its algorithm.

Table 3. Background model parameters.

Method Parameters

DSTEI size = 3× 3× 5 Q = 100 Th = 20
Eigen
Background N = 28 Σ = 3

MRFMD βs = 20 βp = 10 β f = 30 α = 20
Σ∆ µt = 3
SOBS n = 3 ϵ2 = 0.03 γ f = 0.07 β f = 1 τS = 0.1 τH = 10
SWCD N = 35 Tl = 2 Tu = 0.07 R = 0.01
ViBe N = 205 σ = 20 ρ = 16
DMD Dt = 1 Th = 0.25
DEU ρ = 0.9 α = 0.1
GMM σ = 3.5 ρ = 0.9967
GMBSM σ = 1.5 ϕ = 0 λ = 0.35 σx = 3.25 σy = 1.5

In addition to the qualitative tests performed, we conducted quantitative tests on
3600 images, corresponding to a sequence of 900 images from each scene, to estimate the
rates of true positives and false positives. Although there are different ways to evaluate
performance, the evaluation here is performed at the pixel level. In addition to measurement
accuracy and sensitivity, the indicators described below are also used to evaluate and verify
data. According to [68], these are defined as follows.

Sensitivity (also known as True Positive Rate or Recall): This metric measures the
proportion of actual positives that are correctly identified as such. It is calculated as:

Sensitivity =
TP

TP + FN
(10)

Specificity: It measures the proportion of actual negatives that are correctly identified.
It is calculated as:

Speci f ity =
TN

TN + FP
(11)

False Positive Rate (FPR): This is the proportion of actual negatives that are incorrectly
identified as positives. It is calculated as:

FPR =
FP

TN + FP
(12)
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False Negative Rate (FNR): This metric measures the proportion of actual positives
that are incorrectly identified as negatives. It is calculated as:

FNR =
FN

TP + FN
(13)

PWC (Percentage of Wrong Classifications): It represents the percentage of all classifi-
cations that were incorrect. It is calculated as:

PWC =
100× (FN + FP)

TP + FN + FP + TN
(14)

Precision (also known as Positive Predictive Value): This metric measures the propor-
tion of identified positives that are actually correct. It is calculated as:

Precision =
TP

TP + FP
(15)

F Measure (or F1 Score): This is the harmonic mean of Precision and Sensitivity. It
provides a single score that balances the trade-off between Precision and Recall. It is
calculated as:

FMeasure = 2 · Precision · Sensitivity
Precision + Sensitivity

(16)

True positive (TP) refers to pixels correctly identified as part of the moving object.
True negative (TN) denotes pixels correctly identified as part of the static background. False
positive (FP) pertains to pixels incorrectly labeled as part of the moving object when they
belong to the background, while false negative (FN) refers to pixels incorrectly labeled as
background when they are truly part of the moving object. Tables 4 and 5 compare existing
methods and GABSM.

Table 4 shows the results achieved by our method, which achieves a sensitivity of 0.738.
This reflects its efficiency in correctly identifying relevant foreground elements. On the
other hand, a specificity of 0.994 shows the ability to exclude noise generated by reflections.
With a misclassification rate of 1.059, it demonstrates a low error rate in classifying textures,
even when they are complex or appear homogeneous with the environment, under variable
lighting conditions. These fluctuations in lighting can significantly alter how textures are
perceived, representing a challenge for their classification and analysis. Nevertheless, an F1
score of 0.701 evidences that our method is capable not only of recognizing complex texture
patterns but also of adapting to the variability caused by changes in lighting.

Table 4. Results obtained when evaluating the methods in S3.

Method Sensibility Specificity FPR FNR PWC Precision F1 Measure

DEU 0.274 0.984 0.016 0.726 0.301 0.144 0.188
DMD 0.875 0.990 0.010 0.125 1.108 0.472 0.613
DSTEI 0.658 0.984 0.016 0.342 1.751 0.122 0.206
EigenBS 0.437 0.991 0.009 0.563 2.151 0.546 0.486
GMM 0.929 0.991 0.009 0.071 0.989 0.507 0.656
MRFMD 0.735 0.983 0.017 0.265 1.775 0.071 0.130
SDBE 0.830 0.992 0.008 0.170 1.024 0.565 0.673
SOBS 0.929 0.991 0.009 0.071 0.994 0.504 0.654
SWCD 0.890 0.997 0.003 0.110 0.451 0.865 0.877
ViBe 0.883 0.992 0.008 0.117 0.949 0.565 0.689
GMBSM 0.738 0.994 0.006 0.262 1.059 0.668 0.701

In Table 5, a sensitivity of 0.856 is obtained, reflecting our method’s ability to correctly
detect objects of interest. Its specificity of 0.99 and an FPR of 0.008 demonstrate its efficacy
in discarding irrelevant elements, even in a dynamic environment due to the movement
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of leaves. According to the F1 score of 0.746, our method proves to be effective in facing
the complexity of environments influenced by shadows and dynamic movements, such as
those generated by moving tree leaves. Additionally, this environment introduces changes
in perspective, where the distinction between distant and nearby objects complicates the
detection of moving objects due to a fixed Gabor core.

Table 5. Results obtained when evaluating the methods in S4.

Method Sensibility Specificity FPR FNR PWC Precision F1 Measure

DEU 0.285 0.981 0.019 0.715 2.667 0.140 0.187
DMD 0.859 0.991 0.009 0.141 1.127 0.585 0.696
DSTEI 0.620 0.980 0.020 0.380 2.103 0.119 0.199
EigenBS 0.364 0.991 0.009 0.636 3.190 0.596 0.452
GMM 0.793 0.993 0.007 0.207 1.086 0.686 0.736
MRFMD 0.912 0.991 0.009 0.088 1.027 0.591 0.717
SDBE 0.688 0.979 0.021 0.312 2.130 0.062 0.113
SOBS 0.817 0.992 0.008 0.183 1.129 0.628 0.710
SWCD 0.914 0.991 0.009 0.086 0.999 0.604 0.727
ViBe 0.878 0.998 0.002 0.122 0.508 0.893 0.886
GMBSM 0.856 0.99 0.008 0.144 0.993 0.660 0.746

In Table 6, a sensitivity of 0.827 and a high specificity of 0.988 are observed, along
with a relatively low FNR of 0.172 and an FPR of 0.012. These parameters demonstrate that
the GABSM method can adapt to scenarios where moving objects may stop unexpectedly,
presenting a problem for traditional background modeling methods. With an accuracy of
0.863 and an F1 score of 0.901, GABSM proves its reliability in adapting to such scenarios.

Table 6. Results obtained when evaluating the methods in S5.

Method Sensibility Specificity FPR FNR PWC Precision F1 Measure

DEU 0.380 0.956 0.043 0.619 10.821 0.525 0.440
DMD 0.393 0.922 0.078 0.607 8.648 0.080 0.133
DSTEI 0.598 0.935 0.065 0.402 7.637 0.238 0.341
EigenBS 0.900 0.922 0.078 0.100 7.844 0.060 0.113
GMM 0.940 0.969 0.031 0.060 3.308 0.642 0.763
MRFMD 0.986 0.943 0.057 0.014 5.585 0.331 0.495
SDBE 0.919 0.920 0.080 0.081 8.000 0.038 0.073
SOBS 0.710 0.931 0.069 0.290 7.391 0.183 0.291
SWCD 0.999 0.974 0.026 0.001 2.478 0.701 0.824
ViBe 0.927 0.993 0.007 0.073 1.268 0.920 0.923
GMBSM 0.827 0.988 0.012 0.172 0.578 0.863 0.901

Table 7 presents the results obtained in a scenario characterized by acquisition er-
rors and the presence of shadows on moving objects. With a sensitivity of 0.829, our
method can detect foreground moving objects, even in conditions where sampling is not
adequate. A specificity of 0.991 shows its efficiency in differentiating between objects of
interest and the background, thus minimizing misdetections caused both by shadows and
acquisition errors.

Figure 13 shows the percentage of wrong classifications (PWC), which shows the
deviation error in the scene. This error is caused by the number of false positives (FPR)
and false negatives (FNR) described.
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Table 7. Results obtained when evaluating the methods in S6.

Method Sensibility Specificity FPR FNR PWC Precision F1 Measure

DEU 0.318 0.949 0.051 0.682 6.173 0.096 0.148
DMD 0.742 0.958 0.042 0.258 4.618 0.260 0.385
DSTEI 0.645 0.949 0.051 0.355 5.340 0.088 0.155
EigenBS 0.619 0.978 0.022 0.381 4.211 0.630 0.625
GMM 0.985 0.956 0.044 0.015 4.317 0.227 0.369
MRFMD 0.732 0.947 0.053 0.268 5.413 0.042 0.079
SDBE 0.576 0.956 0.044 0.424 5.227 0.227 0.326
SOBS 0.997 0.979 0.021 0.003 2.016 0.640 0.779
SWCD 0.927 0.993 0.007 0.073 1.054 0.879 0.903
ViBe 0.977 0.978 0.022 0.023 2.245 0.611 0.752
GMBSM 0.829 0.991 0.008 0.171 0.271 0.736 0.780

Figure 13a shows that the proposed method has an error percentage similar to most
methods (about 1%) due to the change in the object’s perspective. This problem is the
main weakness of the Gabor filter because it requires functions Gλ,θ,ϕ of different sizes and
frequencies. This increases the complexity of parameter selection and the processing time.
This same problem is shown in Figure 13b. However, in Figure 13c,d, we can see that the
percentage of error is lower; this is because the objects in S5 and S6 scenes do not have
perspective with respect to the camera. For this reason, the size of the Gλ,θ,ϕ function is
fixed so that the texture can be better modeled. The problem in these scenarios is that they
have lower resolution, which means that σx and σy have to be reduced, as well as, therefore,
the lambda value. This effect increases the amount of noise detected and therefore impacts
the amount of true positives detected.

(a) (b)

(c) (d)

Figure 13. Percentage of wrong classifications comparison. (a) Scene S3; (b) Scene S4; (c) Scene S5;
(d) Scene S6.

Figure 14 shows the precision of the methods, which helps us to visualize which
method provides us with more information about moving objects and minimizes irrelevant
information caused by noise, the presence of shadows, or changes in lighting. Although our
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method has good precision regarding positive predictions, its performance is reduced when
the images are smaller or difficult to characterize lighting changes.

(a) (b)

(c) (d)

Figure 14. Comparison of the methods precision. (a) Scene S3; (b) Scene S4; (c) Scene S5; (d) Scene S6.

5. Discussion

According to the results obtained in Table 2, only methods such as DEU, DSTEI, and
RFMD obtained the objects’ contour. The methods DMD, GMM, Sigma-Delta, and SWCD,
although they partially preserve the structure of the objects, present loss of information in
distant objects and are susceptible to shadows and reflections caused by lighting.From our
point of view, the Eigen-Background, SOBS, ViBe, and our GMBSM method provide better
results in preserving the object structure, but they cause the loss of information about
distant objects. Among them, GMBSM is the best, and the results in Figures 13 and 14 show
a lower error percentage and higher accuracy. Nevertheless, distant objects in scenes S3
and S4 will lose information due to the perspective of these scenes.

As mentioned in Section 3.2, a larger object in the image requires a higher density
Gaussian so that the noise attenuation is greater. Although the object is smaller, it requires
a lower frequency response and Gaussian density, producing more noise and possible
false contours. This effect is one of the weaknesses of our method because it requires
different G functions to be applied to the scene. This will increase the execution time and
the complexity of adjusting the parameters.

The advantages of our method are that (i) the representation of an object whose texture
is almost the same as its environment, (ii) it can recover quickly when the object in motion
remains stationary, (iii) according to experiments, it exhibits invariance to light changes,
and (iv) it allows the analysis of texture levels to obtain different texture details.

However, it also has disadvantages: (i) the proper selection of the size of (Gλ,θ,ϕ)
depends on the size of the objects in the scene, (ii) experience is required to select the
appropriate filter parameters and finally, and (iii) the suggested threshold is not the best
method because it depends on the variance of the data, and in the absence of objects, it
will only produce noise. These issues are being considered for future work, as well as
improvements to the method.
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6. Conclusions

We introduced a background subtraction technique that leverages texture-level analy-
sis through the integration of a Gabor filter bank and statistical moments. This approach is
differentiated by its capacity to distinguish between foreground and background entities in
dynamic scenes, a critical challenge where traditional methods often need to improve. Our
method has demonstrated superior performance in maintaining the structural integrity of
the objects while effectively addressing gradual changes in lighting, shadows, and scenarios
with nearly uniform environmental textures. Our experimental validation exhibited bene-
fits over conventional methods by ensuring lower false detection rates and maintaining
high accuracy in object detection across a variety of challenging conditions.

Despite its performance, our method encounters limitations when processing images
of reduced size or in scenarios with complex lighting variations. The difficulty in character-
izing such changes impacts the algorithm’s performance, suggesting a need for improved
strategies in handling small objects or subtle texture variations. Additionally, the reliance
on specific Gabor filter parameters and the selection of an optimal threshold for back-
ground subtraction present complexities in parameter optimization, potentially restricting
the method’s adaptability and ease of implementation across diverse surveillance contexts.

Looking forward, we aim to address these limitations by exploring adaptive parameter-
ization techniques that can dynamically adjust the Gabor filter settings based on the scene’s
characteristics. This could enhance the method’s robustness against varied image sizes and
complex lighting conditions. Further, we plan to investigate deep learning frameworks that
could learn these parameters autonomously, offering a more sophisticated understanding
of the scene dynamics. Additionally, integrating multimodal data sources, such as depth
information, could enrich the algorithm’s contextual awareness, opening opportunities
for more subtle object detection and background modeling. Through these advancements,
we aspire to broaden the applicability of our method, making it a more versatile tool for
real-time surveillance and motion tracking in an array of real-world settings.
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