#
Modelling and Analysis of Neuro Fuzzy Employee Ranking System in the Public Sector^{ †}

^{1}

^{2}

^{*}

^{†}

*Fuzzy Systems and Data Mining VIII: Proceedings of FSDM*2022.

## Abstract

**:**

## 1. Introduction

## 2. Related Work and Contributions

## 3. Methodology

#### 3.1. ANFIS

- Layer 1: In the fuzzification layer, every node i in this layer is a square node with a node function:$${O}_{i}^{1}={u}_{{A}_{i}}\left(x\right)$$
- Layer 2: Circle nodes in the normalisation layer multiply the incoming signals and send the product out. This represents the firing strength of a rule.$${w}_{i}={u}_{{A}_{i}}\left(x\right){u}_{{B}_{i}}\left(y\right),i=1,2$$
- Layer 3: Every node in this layer, labelled in Figure 1 with N, calculates the average ratio of the ith rule’s firing strength.$$\overline{w}=\frac{{w}_{i}}{{w}_{1}+{w}_{2}}\phantom{\rule{4.pt}{0ex}}\mathrm{or}\phantom{\rule{4.pt}{0ex}}\mathrm{in}\phantom{\rule{4.pt}{0ex}}\mathrm{a}\phantom{\rule{4.pt}{0ex}}\mathrm{generic}\phantom{\rule{4.pt}{0ex}}\mathrm{form}:\phantom{\rule{4.pt}{0ex}}{O}_{i}^{3}={\overline{w}}_{i}=\frac{{w}_{i}}{{\sum}_{i=1}^{n}{w}_{i}},i=1,\dots ,n$$
- Layer 4: Every node “i” in this layer is a square node with a node function, where ${w}_{i}$ is the normalised firing strength from the output of Layer 3 and ${p}_{i}$, ${q}_{i}$, ${r}_{i}$ are referred to as consequent parameters.
- Layer 5: The final layer represents the overall output y of the network as the summation of all incoming signals:$${O}_{i}^{5}=f=\sum _{i}{\overline{w}}_{l}{f}_{i}=\frac{{\sum}_{i}{w}_{i}{f}_{i}}{{\sum}_{i}{w}_{i}}$$$$f=\frac{{\sum}_{i=1}^{n}{w}_{i}\left({p}_{i}x+{q}_{i}y+{r}_{i}\right)}{{\sum}_{i=1}^{n}{w}_{i}}$$

#### 3.2. Workflow

#### 3.3. Data Preparation

- K1: (academic skills):
- 1.
- The number of seminars related to the current work with a maximum of three $({S}_{1},{S}_{2},{S}_{3})$.
- 2.
- The number of Bachelor’s degrees with a maximum of two $({B}_{1},{B}_{2})$.
- 3.
- The availability of Master’s degrees.
- 4.
- Certification from the National School of Public Administration.
- 5.
- A Ph.D. diploma.

- K2: (work experience in the public sector):
- 1.
- Number of years with a maximum number of 35.
- 2.
- Type of responsibility.
- 3.
- Head of a small department.
- 4.
- Head of the department.
- 5.
- General manager.

- K3: (work experience in the private sector):
- 1.
- Number of years with a maximum number of 35.
- 2.
- Type of responsibility.
- 3.
- Head of a small department.
- 4.
- Head of department.
- 5.
- General manager.

- K4: (age):
- 1.
- Number of years with a range of (20–67). Greek legislation sets the age of 67 years as the limit when working in the public sector.

#### 3.4. Measuring Time

#### 3.5. Defining the Tasks in Public Organisations

#### 3.6. Assessment of Employee Quality

## 4. Experimental Results

## 5. Discussion

#### 5.1. Time Complexity of ANFIS

#### 5.2. Limitations

#### 5.3. Computing Cost and Economic Effectiveness

## 6. Conclusions and Future Work

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Michalopoulos, D.; Karras, A.; Karras, C.; Sioutas, S.; Giotopoulos, K. Neuro-Fuzzy Employee Ranking System in the Public Sector. In Volume 358: Fuzzy Systems and Data Mining VIII; IOS Press: Amsterdam, The Netherlands, 2022; pp. 325–333. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control
**1965**, 8, 338–353. [Google Scholar] [CrossRef] [Green Version] - Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern.
**1993**, 23, 665–685. [Google Scholar] [CrossRef] - Fahmy, R.; Zaher, H. A comparison between fuzzy inference systems for prediction (with application to prices of fund in Egypt). Int. J. Comput. Appl.
**2015**, 109. [Google Scholar] [CrossRef] - Gruzdev, M.V.; Kuznetsova, I.V.; Tarkhanova, I.Y.; Kazakova, E.I. University Graduates’ Soft Skills: The Employers’ Opinion. Eur. J. Contemp. Educ.
**2018**, 7, 690–698. [Google Scholar] - Islam, M. Evaluating the practices of electronic human resources management (E-HRM) as a key tool of technology driven human resources management function in organizations-a comparative study in public sector and private sector enterprises of Bangladesh. IOSR J. Bus. Manag. (IOSR-JBM)
**2016**, 18. [Google Scholar] [CrossRef] [Green Version] - Raudeliūnienė, J.; Meidutė-Kavaliauskienė, I. Analysis of factors motivating human resources in public sector. Procedia-Soc. Behav. Sci.
**2014**, 110, 719–726. [Google Scholar] [CrossRef] [Green Version] - Keršulienė, V.; Turskis, Z. Integrated fuzzy multiple criteria decision making model for architect selection. Technol. Econ. Dev. Econ.
**2011**, 17, 645–666. [Google Scholar] [CrossRef] [Green Version] - Kelemenis, A.; Askounis, D. A new TOPSIS-based multi-criteria approach to personnel selection. Expert Syst. Appl.
**2010**, 37, 4999–5008. [Google Scholar] [CrossRef] - Tien Bui, D.; Khosravi, K.; Li, S.; Shahabi, H.; Panahi, M.; Singh, V.P.; Chapi, K.; Shirzadi, A.; Panahi, S.; Chen, W.; et al. New hybrids of anfis with several optimization algorithms for flood susceptibility modelling. Water
**2018**, 10, 1210. [Google Scholar] [CrossRef] [Green Version] - Diamantidis, A.D.; Chatzoglou, P. Factors affecting employee performance: An empirical approach. Int. J. Product. Perform. Manag.
**2019**, 68, 171–193. [Google Scholar] [CrossRef] - Slavyanov, K. An algorithm of fuzzy inference system for human resources selection tools. Soc. Integr. Educ. Proc. Int. Sci. Conf.
**2018**, 5, 445–454. [Google Scholar] [CrossRef] - Karsak, E.E. A fuzzy multiple objective programming approach for personnel selection. In Proceedings of the SMC 2000 Conference Proceedings, 2000 IEEE International Conference on Systems, Man and Cybernetics. ’Cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions’ (Cat. No. 0.), Nashville, TN, USA, 8–11 October 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 3, pp. 2007–2012. [Google Scholar]
- Golec, A.; Kahya, E. A fuzzy model for competency-based employee evaluation and selection. Comput. Ind. Eng.
**2007**, 52, 143–161. [Google Scholar] [CrossRef] - Doctor, F.; Hagras, H.; Roberts, D.; Callaghan, V. A neuro fuzzy based agent for group decision support in applicant ranking within human resources systems. In Proceedings of the 2009 IEEE International Conference on Fuzzy Systems, Jeju Island, Republic of Korea, 20–24 August 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 744–750. [Google Scholar]
- Rajab, S.; Sharma, V. A review on the applications of neuro fuzzy systems in business. Artif. Intell. Rev.
**2018**, 49, 481–510. [Google Scholar] [CrossRef] - Azzini, A.; Marrara, S.; Topalovic, A. A neuro fuzzy approach to assess the soft skills profile of a Ph.D. In Proceedings of the Fuzzy Logic and Applications: 12th International Workshop, WILF 2018, Genoa, Italy, 6–7 September 2018; Revised Selected Papers. Springer: Berlin/Heidelberg, Germany, 2019; pp. 134–147. [Google Scholar]
- Indrawati, S.; Azzam, A. Development of decision support system for employee selection using Adaptive Neuro Fuzzy Inference System. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Ulis, France, 2018; Volume 154, p. 01077. [Google Scholar]
- Žunić, E.; Djedović, A.; Avdagić, Z. Decission support system for candidates classification in the employment process based on ANFIS method. In Proceedings of the 2016 XI International Symposium on Telecommunications (BIHTEL), Sarajevo, Bosnia and Herzegovina, 24–26 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Escolar-Jimenez, C.C.; Matsuzaki, K.; Gustilo, R.C. A neural-fuzzy network approach to employee performance evaluation. Int. J. Adv. Trends Comput. Sci. Eng.
**2019**, 8, 573. [Google Scholar] [CrossRef] - Huynh, N.T.; Nguyen, T.V.; Nguyen, Q.M. Optimum Design for the Magnification Mechanisms Employing Fuzzy Logic-ANFIS. CMC-Comput. Mater. Contin.
**2022**, 73, 5961–5983. [Google Scholar] - Nguyen, T.V.; Huynh, N.T.; Vu, N.C.; Kieu, V.N.; Huang, S.C. Optimizing compliant gripper mechanism design by employing an effective bi-algorithm: Fuzzy logic and ANFIS. Microsyst. Technol.
**2021**, 27, 3389–3412. [Google Scholar] [CrossRef] - Kannathal, N.; Lim, C.; Acharya, U.R.; Sadasivan, P. Cardiac state diagnosis using adaptive neuro fuzzy technique. Med. Eng. Phys.
**2006**, 28, 809–815. [Google Scholar] [CrossRef] - Dhir, K.; Chhabra, A. Automated employee evaluation using fuzzy and neural network synergism through IoT assistance. Pers. Ubiquitous Comput.
**2019**, 23, 43–52. [Google Scholar] [CrossRef] - Güneri, A.F.; Ertay, T.; Yücel, A. An approach based on ANFIS input selection and modelling for supplier selection problem. Expert Syst. Appl.
**2011**, 38, 14907–14917. [Google Scholar] [CrossRef] - Solichin, A.; Saputri, F.H. An Adaptive Neuro-Fuzzy Inference System (ANFIS) Method for Recommending Employee Mutations in a Manufacturing Company. J. Phys.
**2021**, 1908, 012016. [Google Scholar] [CrossRef] - Stojčić, M.; Pamučar, D.; Mahmutagić, E.; Stević, Ž. Development of an ANFIS Model for the Optimization of a Queuing System in Warehouses. Information
**2018**, 9, 240. [Google Scholar] [CrossRef] [Green Version] - Zhang, C.; Li, D.; Zhai, Y.; Yang, Y. Multigranulation rough set model in hesitant fuzzy information systems and its application in person-job fit. Int. J. Mach. Learn. Cybern.
**2019**, 10, 717–729. [Google Scholar] [CrossRef] - Zhang, C.; Li, D.; Liang, J. Multi-granularity three-way decisions with adjustable hesitant fuzzy linguistic multigranulation decision-theoretic rough sets over two universes. Inf. Sci.
**2020**, 507, 665–683. [Google Scholar] [CrossRef] - Moura, L.F.; Pinheiro de Lima, E.; Deschamps, F.; Van Aken, E.; Gouvea da Costa, S.E.; Treinta, F.T.; Cestari, J.M.A.P. Designing performance measurement systems in nonprofit and public administration organizations. Int. J. Product. Perform. Manag.
**2019**, 68, 1373–1410. [Google Scholar] [CrossRef] - Londoño-Montoya, E.; Gomez-Bayona, L.; Moreno-López, G.; Duarte, C.A.; Marín, L.G.; Becerra, M. Regression fusion framework: An approach for human capital evaluation. In Proceedings of the European Conference on Knowledge Management, ECKM, Barcelona, Spain, 7–8 September 2017; Volume 1, pp. 590–597. [Google Scholar]
- Wiemann, M.; Meidert, N.; Weibel, A. “Good” and “Bad” Control in Public Administration: The Impact of Performance Evaluation Systems on Employees’ Trust in the Employer. Public Pers. Manag.
**2019**, 48, 283–308. [Google Scholar] [CrossRef] - Vigoda-Gadot, E.; Eldor, L.; Schohat, L.M. Engage them to public service: Conceptualization and empirical examination of employee engagement in public administration. Am. Rev. Public Adm.
**2013**, 43, 518–538. [Google Scholar] [CrossRef] - Schizas, N.; Karras, A.; Karras, C.; Sioutas, S. TinyML for Ultra-Low Power AI and Large Scale IoT Deployments: A Systematic Review. Future Internet
**2022**, 14, 36. [Google Scholar] [CrossRef] - Karras, C.; Karras, A.; Tsolis, D.; Avlonitis, M.; Sioutas, S. A Hybrid Ensemble Deep Learning Approach for Emotion Classification. In Proceedings of the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 3881–3890. [Google Scholar] [CrossRef]
- Karras, A.; Karras, C.; Giotopoulos, K.C.; Giannoukou, I.; Tsolis, D.; Sioutas, S. Download Speed Optimization in P2P Networks Using Decision Making and Adaptive Learning. In Proceedings of the ICR’22 International Conference on Innovations in Computing Research, Athens, Greece, 29–31 August 2022; Daimi, K., Al Sadoon, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 225–238. [Google Scholar]
- Karras, C.; Karras, A.; Avlonitis, M.; Giannoukou, I.; Sioutas, S. Maximum Likelihood Estimators on MCMC Sampling Algorithms for Decision Making. In Proceedings of the Artificial Intelligence Applications and Innovations, AIAI 2022 IFIP WG 12.5 International Workshops, Crete, Greece, 17–20 June 2022; Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 345–356. [Google Scholar]
- Karras, C.; Karras, A.; Avlonitis, M.; Sioutas, S. An Overview of MCMC Methods: From Theory to Applications. In Proceedings of the Artificial Intelligence Applications and Innovations, AIAI 2022 IFIP WG 12.5 International Workshops, Crete, Greece, 17–20 June 2022; Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 319–332. [Google Scholar]
- Özkan, G.; İnal, M. Comparison of neural network application for fuzzy and ANFIS approaches for multi-criteria decision making problems. Appl. Soft Comput.
**2014**, 24, 232–238. [Google Scholar] [CrossRef]

Financial Request | Technical Opinion |
---|---|

Suggestion of new technical document | Draft tender design |

Committee minutes | Design of a national tender |

Primary expense claim | Design of an international tender |

Contract deployment | Implementation of a proposal for inclusion in the NSRF |

Sample No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

$T{F}_{PjTk}$ (min) | 149 | 106 | 81 | 319 | 209 | 157 | 208 | 171 | 129 | 138 | 180 | 338 | 197 | 208 | 115 |

$T{F}_{PjTk+1}$ (min) | 1049 | 1185 | 1090 | 739 | 900 | 946 | 1047 | 396 | 909 | 571 | 771 | 734 | 460 | 823 | 623 |

$T{F}_{PjT1}$ (min) | 53 | 74 | 47 | 25 | 21 | 29 | 31 | 44 | 66 | 46 | 54 | 86 | 43 | 63 | 42 |

Task ID | Task Weight | Task | Task ID | Task Weight | Task |
---|---|---|---|---|---|

1 | 1 | Financial request | 6 | 8 | Technical opinion |

2 | 2 | Suggestion of new technical document | 7 | 3.75 | Draft tender design |

3 | 30 | Committee minutes | 8 | 17 | Design of a national tender |

4 | 1.2 | Primary expense claim | 9 | 25 | Design of an international tender |

5 | 2 | Contract deployment | 10 | 12 | Design of a proposal for the NSRF |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Giotopoulos, K.C.; Michalopoulos, D.; Karras, A.; Karras, C.; Sioutas, S.
Modelling and Analysis of Neuro Fuzzy Employee Ranking System in the Public Sector. *Algorithms* **2023**, *16*, 151.
https://doi.org/10.3390/a16030151

**AMA Style**

Giotopoulos KC, Michalopoulos D, Karras A, Karras C, Sioutas S.
Modelling and Analysis of Neuro Fuzzy Employee Ranking System in the Public Sector. *Algorithms*. 2023; 16(3):151.
https://doi.org/10.3390/a16030151

**Chicago/Turabian Style**

Giotopoulos, Konstantinos C., Dimitrios Michalopoulos, Aristeidis Karras, Christos Karras, and Spyros Sioutas.
2023. "Modelling and Analysis of Neuro Fuzzy Employee Ranking System in the Public Sector" *Algorithms* 16, no. 3: 151.
https://doi.org/10.3390/a16030151