Optimal Motorcycle Engine Mount Design Parameter Identification Using Robust Optimization Algorithms
Abstract
:1. Introduction and Background
2. Engine Mounting System Optimization Procedures
3. Utilized Design Optimization Algorithms
3.1. Grey Wolf Optimizer (GWO)
Algorithm 1. Grey Wolf Optimizer |
Initialize the grey wolf population Xi, i = 1…n |
Initialize a, A, and C |
Calculate the fitness of each search agent |
Xalpha = the best search agent |
Xbeta = the second best search agent |
Xgamma= the third best search agent |
Whilet < max number of iterations do |
for each search agent do |
Randomly initialize r1 and r2 |
1.1 Update the position of the current search agent |
2.1 Update a, A, and C |
Calculate the fitness of all search agents |
Update Xalpha, Xbeta, Xgamma |
t = t + 1 |
Return Xalpha |
3.2. Genetic Algorithm (GA)
3.3. Gradient-Based Algorithms
Algorithm 2. Sequential Quadratic Programming |
3.1 begin |
Choose a starting point Xo and approximation Ho to the Hessian |
repeati = 1, 2,… |
Solve a QP sub-problem QPi to obtain the search direction Si |
Given Si, find alpha so to determine Xi+1 |
Update the approximation Hessian Hi+1 using the BFGS scheme |
i = i + 1 |
Untilreaching stopping criterion |
end |
4. Motorcycle Engine Mount Design Models
4.1. Model 1: Deriving Matrices for Stiffness and Damping Coefficients
4.2. Model 1: Shaking Forces
4.3. Model 2: Shaking Forces and Road Loads (Combined Loads)
4.4. Formulation of the Optimization Problems
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stefano, A.; Natale, B.A. Investigation of Structural Motorcycle Vibrations Due to Engine; Omniscriptum Gmbh & Co., Kg.: Saarbrücken, Germany, 2015; ISBN 978-3639659429. [Google Scholar]
- Scappaticci, L.; Bartolini, N.; Guglielmino, E.; Risitano, G. Structural optimization of a motorcycle chassis by pattern search algorithm. Eng. Optim. 2017, 49, 1373–1387. [Google Scholar] [CrossRef]
- Johnson, S.; Subhedar, J. Computer Optimization of Engine Mounting Systems. SAE Technical Paper 790974; In 3rd International Conference on Vehicle Structural Mechanics; SAE International: Warrendale, PA, USA, 1979. [Google Scholar] [CrossRef]
- Arai, T.; Kubozuka, T.; Gray, S. Development of an Engine Mount Optimization Method Using Modal Parameters. In SAE 1993 Transactions: Journal of Passenger Cars-V102-61993; SAE Technical Paper 932898; SAE International: Warrendale, PA, USA, 1993. [Google Scholar] [CrossRef]
- Heyns, S. An Optimization Approach to Engine Mounting Design; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, January 1996. [Google Scholar]
- Foumani, M.S.; Khajepour, A.; Durali, M. Optimization of Engine Mount Characteristics Using Experimental/Numerical Analysis. J. Control. Vib. 2003, 9, 1103–1120. [Google Scholar] [CrossRef]
- Kaul, S.; Dhingra, A.K.; Hunter, T.G. Two approaches for optimum design of motorcycle engine mount systems. J. Eng. Optim. 2005, 37, 307–324. [Google Scholar] [CrossRef]
- Courteille, E.; Mortier, F.; Leotoing, L.; Ragneau, E. Multi-objective robust design optimization of an engine mounting system. In Proceedings of the SAE 2005 Noise and Vibration Conference and Exhibition, Traverse City, MI, USA, 16 May 2005. [Google Scholar]
- Kaul, S.; Anoop, D.; Timothy, H. Frame Flexibility Effects on Engine Mount Optimization for Vibration Isolation in Motorcycles. J. Vib. Acoust. 2007, 129, 590–600. [Google Scholar] [CrossRef]
- Kaul, S.; Dhingra, A.K. Engine mount optimization for vibration isolation in motorcycles. Veh. Syst. Dyn. 2009, 47, 419–436. [Google Scholar] [CrossRef]
- Nariman-Zadeh, N.; Salehpour, M.; Jamali, A. Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA). Eng. Appl. Artif. Intel. 2010, 23, 543–551. [Google Scholar] [CrossRef]
- Cheli, F.; Pezzola, M.; Agostoni, S.; Giombini, M. Methodology to optimize engine mounts design in order to minimize inertial unbalances vibration propagation. In Proceedings of the 2011 19th Mediterranean Conference on Control & Automation (MED), Corfu, Greece, 20–23 June 2011. [Google Scholar]
- Ooi, L.; Ripin, Z.M. Optimization of an engine mounting system with consideration of frequency-dependent stiffness and loss factor. J. Vib. Control 2016, 22, 2406–2419. [Google Scholar] [CrossRef]
- Ahn, Y.K.; Kim, Y.C.; Yan, B.S.; Ahmadian, M.; Ahn, K.K.; Morishita, S. Optimal Design of an Engine Mount Using an Enhanced Genetic Algorithm with Simplex Method. Veh. Syst. Dyn. 2005, 431, 57–81. [Google Scholar] [CrossRef]
- Ayarani-N, M.H.; Yao, X.; Xu, H. Meta-heuristic algorithms in car engine design: A literature survey. IEEE Trans. Evol. Comput. 2015, 19, 609–629. [Google Scholar] [CrossRef]
- Ganguly, A.; Bhatia, N.; Agarwal, V.; Mohite, U. Balancing Optimization of a Motorcycle Engine Crankshaft for Vibration Reduction; SAE Technical Paper 2016-01-1060; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- AlKhatib, F.; Dhingra, A. Vibration analysis, shape and design of motorcycle mounting system subjected to shacking forces. Int. J. Eng. Sci. Res. Technol. 2016, 5, 698–713. [Google Scholar]
- Kirthana, S.; Nizamuddin, M. Finite Element Analysis and Topology Optimization of Engine Mounting Bracket. Mater. Today Proc. 2018, 5, 19277–19283. [Google Scholar] [CrossRef]
- Xu, X.; Su, C.; Dong, P.; Liu, Y.; Wang, S. Optimization design of powertrain mounting system considering vibration analysis of multi-excitation. Adv. Mech. Eng. 2018, 10, 1687814018788246. [Google Scholar] [CrossRef]
- Sleesongsom, S.; Bureerat, S. Vibration Suppression of a Single-Cylinder Engine by Means of Multi-objective Evolutionary Optimization. Sustainability 2018, 10, 2067. [Google Scholar] [CrossRef]
- Ohadi, A.R.; Maghsoodi, G. Simulation of engine vibration on nonlinear hydraulic engine mounts. J. Vib. Acoust. 2007, 129, 417–424. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: New York, NY, USA, 2006; ISBN 978-0-387-30303-1. [Google Scholar]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2008; ISBN 978-1-905986-10-1. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995. [Google Scholar]
- Yang, X.-S.; Deb, S. Cuckoo Search via Levy Flights. In Proceedings of the World Congress on Nature Biologically Inspired Computing, NaBIC 2009, Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Dorigo, M.; Birattari, M. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Dervis, K. An Idea Based on Honeybee Swarm for Numerical Optimization; Technical Report-TR06; Erciyes University, Computer Engineering Department: Kayseri, Türkiye, 2005. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Yildiz, A.R.; Abderazek, H.; Mirjalili, S. A Comparative Study of Recent Non-traditional Methods for Mechanical Design Optimization. Arch. Comput. Methods Eng. 2020, 27, 1031–1048. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Sadollah, A.; Eskandar, H.; Bahreininejad, A.; Kim, J.H. Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl. Soft. Comput. 2015, 30, 58–71. [Google Scholar] [CrossRef]
- Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm for optimization of truss structures with discrete variables. Comput. Struct. 2012, 102, 49–63. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Muro, C.; Escobedo, R.; Spector, L.; Coppinger, R. Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Process. 2011, 88, 192–197. [Google Scholar] [CrossRef]
- Fadi, A. Techniques for Engine Mount Modeling and Optimization. Ph.D. Thesis, University of Wisconsin Milwaukee, Milwaukee, WI, USA, 2013. [Google Scholar]
- Younis, A.; Dong, Z. Trends, features, and tests of common and recently introduced global optimization methods. Eng. Optim. 2010, 42, 691–718. [Google Scholar] [CrossRef]
Algorithm | Parameters | Value/Setting |
---|---|---|
GWO | Number of wolves | 30 |
Max. number of iterations | 1000 | |
Decreases linearly from 2 to 0 | ||
r1 and r2 | Random numbers in [0, 1] | |
A = 2.. rand (r1)− | ||
= 2. rand (r2) | ||
GA | Population size | 200 |
Crossover’s probability | 0.8 | |
Mutation probability | 0.1 | |
SQP | Starting point | (475, 7500, 12, −9, 0, −19, −5, 0, 0.1, 50, 0.5, 25) |
Max. number of iterations | 1000 |
Design Variable | LB | UB |
---|---|---|
Stiffness along x and y axes (lb.in) | 100 | 5000 |
Stiffness on the z-axis (lb.in) | 500 | 10,000 |
Location of mounts 1 & 2 (x-axis) | 8 | 12 |
Location of mounts 1 & 2 (y-axis) | −9 | −5 |
Location of mounts 1 & 2 (z-axis) | −7 | −3 |
Location of mounts 3& 4 (x-axis) | −17 | −11 |
Location of mounts 3 & 4 (y-axis) | −10 | −6 |
Location of mounts 3 &4 (z-axis) | −7 | −3 |
Orientation of mount 1 (deg.) | 0 | 50 |
Orientation of mount 2 (deg.) | 0 | 50 |
Orientation of mount 3 (deg.) | 0 | 50 |
Orientation of mount 4 (deg.) | 0 | 50 |
Opt. Algorithm | Load Trans. (lb.) | Number of Iterations | Optimized Mount Stiffness (lb./in) | ||
---|---|---|---|---|---|
Kx | Ky | Kz | |||
GWO | 1.5981 | 80 | 100 | 100 | 500 |
GA | 285.5898 | 200 | 1165.4271 | 1165.4271 | 1766.7258 |
SQP | 38.7022 | 121 | 2144.1395 | 2144.1395 | 1155.4404 |
Opt. Algorithm | Natural Frequencies (Hz) | |||||
---|---|---|---|---|---|---|
GWO (Un-Damped) | 1.5047 | 10.2841 | 10.5974 | 11.4362 | 19.2999 | 27.9737 |
36.2066 | 83.1606 | 103.0303 | 104.9282 | 200.5981 | 1271.338 | |
GWO (Damped) | 1.4327 | 10.2178 | 10.5918 | 11.4340 | 19.2926 | 27.9086 |
36.1198 | 82.3092 | 102.9964 | 104.9138 | 198.4054 | 1270.326 | |
GA (Un-Damped) | 1.6681 | 9.9124 | 10.7731 | 16.7775 | 24.2217 | 25.1362 |
42.3448 | 63.0191 | 103.6622 | 104.1913 | 200.5471 | 1271.340 | |
GA (Damped) | 1.5951 | 9.8888 | 10.6892 | 16.7717 | 24.1934 | 25.1023 |
42.1556 | 62.8106 | 103.6198 | 104.1895 | 198.3563 | 1270.328 | |
SQP (Un-Damped) | 1.4887 | 8.86195 | 10.9074 | 11.04533 | 20.2400 | 23.4522 |
44.8094 | 103.0313 | 104.7901 | 110.6138 | 200.6037 | 1271.304 | |
SQP (Damped) | 1.4093 | 8.7623 | 10.8985 | 11.0445 | 20.2197 | 23.4471 |
44.5790 | 102.9973 | 104.7789 | 108.0104 | 198.4111 | 1270.297 |
Opt. Algorithm | Damping Coefficients | |||||
---|---|---|---|---|---|---|
GWO | 0.0166 | 0.0198 | 0.0257 | 0.0274 | 0.0327 | 0.0399 |
0.0682 | 0.0692 | 0.1134 | 0.1427 | 0.1475 | 0.3057 | |
GA | 0.0059 | 0.0263 | 0.0286 | 0.0399 | 0.0483 | 0.0519 |
0.0690 | 0.0813 | 0.0944 | 0.1246 | 0.1474 | 0.2925 | |
SQP | 0.021 | 0.0146 | 0.0209 | 0.0257 | 0.0397 | 0.0402 |
0.0448 | 0.1013 | 0.1474 | 0.1495 | 0.2157 | 0.3233 |
Design Variables | Opt. Alg. | Mount 1 | Mount 2 | Mount 3 | Mount 4 |
---|---|---|---|---|---|
Optimized Orientation (deg) | GWO | (0.7, 0.0012, 0) | (−0.7, −0.0012, 0) | (0.0002, 0.017, 0) | (−0.0002, −0.017, 0) |
GA | (50, 10.6, 0) | (−50, −10.6, 0) | (50, 10.8, 0) | (−50, −10.8, 0) | |
SQP | (0.0005, 3.2, 0) | (−0.0005, −3.2, 0) | (0.00002, 0.00006, 0) | (−0.00002, −0.00006, 0) | |
Optimized Position (in) | GWO | (8, −5, −3) | (8, −5, 3) | (−12.3, −7.3, −5.2) | (−12.3, −7.3, 5.2) |
GA | (11.265, −5, −3.0024) | (11.265, −5, 3.0024) | (−11.036, −6., −3) | (−11.036, −6, 3) | |
SQP | (8, −5, −7) | (8, −5, 7) | (−17, −6, −3) | (−17, −6, 3) |
Opt. Algorithm | Load Trans. (lb.) | Number of Iterations | Optimized Mount Stiffness (lb./in) | ||
---|---|---|---|---|---|
Kx | Ky | Kz | |||
GWO | 92.9407 | 100 | 100 | 100 | 500 |
GA | 288.0116 | 200 | 1500.657 | 1500.657 | 500 |
SQP | 434.3781 | 76 | 1264.616 | 1264.616 | 2135.474 |
Opt. Algorithm | Natural Frequencies (HZ) | |||||
---|---|---|---|---|---|---|
GWO (Un-Damped) | 1.5034 | 8.4261 | 10.7094 | 15.4325 | 20.9817 | 36.4454 |
41.4712 | 71.2310 | 103.2026 | 104.7980 | 200.5963 | 1271.338 | |
GWO (Damped) | 1.4179 | 8.4167 | 10.7086 | 15.3437 | 20.9767 | 36.3291 |
41.2907 | 70.7991 | 103.1668 | 104.7911 | 198.4041 | 1270.326 | |
GA (Un-Damped) | 1.5205 | 9.8706 | 10.5851 | 12.2400 | 21.6985 | 31.4408 |
37.3987 | 81.8021 | 103.0300 | 104.3988 | 200.5693 | 1271.372 | |
GA (Damped) | 1.4506 | 9.8058 | 10.5762 | 12.2377 | 21.6925 | 31.3493 |
37.2482 | 80.9966 | 102.9962 | 104.3956 | 198.378 | 1270.352 | |
SQP (Damped) | 1.426 | 8.9260 | 10.0566 | 11.3306 | 22.3357 | 36.9528 |
43.7704 | 79.2452 | 102.9955 | 104.4396 | 198.4062 | 1270.352 | |
SQP (Un-Damped) | 1.5001 | 8.9318 | 10.1301 | 11.3319 | 22.3410 | 37.1080 |
43.9998 | 79.9703 | 103.0294 | 104.4435 | 200.5984 | 1271.371 |
Opt. Algorithm | Damping Coefficients | |||||
---|---|---|---|---|---|---|
GWO | 0.0114 | 0.0120 | 0.0218 | 0.0263 | 0.0399 | 0.0472 |
0.0798 | 0.932 | 0.1071 | 0.1100 | 0.1474 | 0.3326 | |
GA | 00.78 | 0.195 | 0.0234 | 0.0256 | 0.0400 | 0.0410 |
0.0763 | 0.0896 | 0.1144 | 0.1400 | 0.1474 | 0.29997 | |
SQP | 0.0087 | 0.0151 | 0.0218 | 0.0256 | 0.0360 | 0.0400 |
0.0914 | 0.1020 | 0.1201 | 0.1344 | 0.1474 | 0.3103 |
Design Variables | Opt. Alg. | Mount 1 | Mount 2 | Mount 3 | Mount 4 |
---|---|---|---|---|---|
Optimized Orientation (deg) | GWO | (0.1, 18., 0) | (−0.1, −18, 0) | (28.7, 5.2, 0) | (−28.7, −5.2, 0) |
GA | (0, 50, 0) | (0, −50, 0) | (0.1, 50, 0) | (−0.1, −50, 0) | |
SQP | (0, 30.2, 0) | (0, −30.2, 0) | (1.3, 50, 0) | (−1.3. −50, 0) | |
Optimized Position (in) | GWO | (8, −9, −7) | (8, −9, 7) | (−11, −6, −3) | (−11, −6, 3) |
GA | (10.5, −5, −3) | (10.5, −5, 3) | (−11, −6, −6.4) | (−11, −6, 6.4) | |
SQP | (8, −9, −3) | (8, −9, 3) | (−13.1, −6, −4.7) | (−13.1, −6, 4.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younis, A.; AlKhatib, F.; Dong, Z. Optimal Motorcycle Engine Mount Design Parameter Identification Using Robust Optimization Algorithms. Algorithms 2022, 15, 271. https://doi.org/10.3390/a15080271
Younis A, AlKhatib F, Dong Z. Optimal Motorcycle Engine Mount Design Parameter Identification Using Robust Optimization Algorithms. Algorithms. 2022; 15(8):271. https://doi.org/10.3390/a15080271
Chicago/Turabian StyleYounis, Adel, Fadi AlKhatib, and Zuomin Dong. 2022. "Optimal Motorcycle Engine Mount Design Parameter Identification Using Robust Optimization Algorithms" Algorithms 15, no. 8: 271. https://doi.org/10.3390/a15080271
APA StyleYounis, A., AlKhatib, F., & Dong, Z. (2022). Optimal Motorcycle Engine Mount Design Parameter Identification Using Robust Optimization Algorithms. Algorithms, 15(8), 271. https://doi.org/10.3390/a15080271