Dark Type Dynamical Systems: The Integrability Algorithm and Applications †
Abstract
:1. Introduction
2. Nonlinear Dynamical Systems and the Lax Type Representation
2.1. Generalized Eigenvalue Problem
2.2. Properties of the Periodic Spectral Problem: Floquet Theory Aspects
2.3. Generative Function of Conserved Quantities
2.4. Gradient-Holonomic Integrability Analysis
2.5. Conservation Laws and the Related Involutive Properties
2.6. Integrability Testing Algorithm
2.7. An Optimal Control Problem Aspect
3. Nonlinear Integrable Dark Type Dynamical Systems: Hidden Symmetry Properties and Integrability Testing Algorithm
3.1. Dark Type Dynamical Systems: Introductory Setting
3.2. Integrability Analysis: Diffusion Class Dynamical Dark Type Systems
3.2.1. A First Diffusion Class Dynamical System
3.2.2. A Second Diffusion Class Dynamical System
3.2.3. A third diffusion class dynamical system: Not Dark Type Example
3.3. Integrability Analysis: Dispersion Class Dynamical Dark Type Systems
3.3.1. A First Dispersion Class Dynamical System
3.3.2. A Second Diffusion-Dispersion Class Dynamical System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kupershmidt, B.A. Dark equations. J. Nonlin. Math. Phys. 2001, 8, 363–445. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Mathematics of dispersive water waves. Commun. Math. Phys. 1985, 99, 51–73. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; An, H.L. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators. Chin. Phys. Lett. 2018, 35, 010201. [Google Scholar] [CrossRef]
- Chen, M.D.; Li, B. Classification and Recursion Operators of Dark Burgers’ Equation. Z. Naturforsch. 2018, 73, 175–180. [Google Scholar] [CrossRef]
- Xiong, N.; Lou, S.-Y.; Li, B.; Chen, Y. Classification of Dark modified KdV equation. Commun. Theor. Phys. 2017, 68, 13–20. [Google Scholar] [CrossRef]
- Blackmore, D.; Prykarpatsky, A.K. Dark equations and their light integrability. J. Nonlinear Math. Phys. 2014, 21, 407–428. [Google Scholar] [CrossRef]
- Blackmore, D.; Prytula, M.; Prykarpatski, A. Quasi-linearization and integrability analysis of some self-dual, darkequations and a new dynamical system. Commun. Theor. Phys. 2022. Available online: http://iopscience.iop.org/article/10.1088/1572-9494/ac5d28 (accessed on 29 June 2022). [CrossRef]
- Blackmore, D.; Prykarpatsky, A.K.; Özçak, E.; Soltanov, K. Integrability analysis of a two-component Burgers-type hierarchy. Ukr. Math. J. 2015, 67, 147–162. [Google Scholar] [CrossRef]
- Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Olver, P. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Krasil’shchik, I.S.; Lychagin, V.V.; Vinogradov, A.M. Geometry of Jet Spaces and Nonlinear Partial Differential Equations; Gordon and Breach: New York, NY, USA, 1986. [Google Scholar]
- Krasil’shchik, I.S.; Vinogradov, A.M. Nonlocal symmetries and the theory of coverings. Acta Appl. Math. 1984, 2, 79–86. [Google Scholar] [CrossRef]
- Krasil’shchik, I.S.; Vinogradov, A.M. Nonlocal trends in the geometry of differential equa-tions: Symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math. 1989, 15, 161–209. [Google Scholar] [CrossRef]
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Hentosh, O.; Prytula, M.; Prykarpatsky, A. Differential-Geometric and Li-Algebraic Foundations of Integrable Nonlinear Dynamical Systems on Functional Manifolds; Ivan Franko National University of Lviv Publisher: Lviv, Ukraine, 2006; p. 408. (In Ukrainian) [Google Scholar]
- Prykarpatsky, A.K.; Mykytiuk, I.V. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds; Springer: Dordrecht, The Netherland, 1998. [Google Scholar]
- Kriegl, A.; Michor, P. The Convenient Setting of Global Analysis. In Mathematical Surveys and Monographs; AMS: Providence, RI, USA, 1997; Volume 53. [Google Scholar]
- Abraham, R.; Marsden, J. Foundations of Mechanics, 2nd ed.; Benjamin Cummings: New York, NY, USA, 1978. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1989. [Google Scholar]
- Maccari, M. The Kadomtsev-Petviashvili equation as a source of integrable model equations. J. Math. Phys. 1996, 37, 6207. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. On the exact solutions to some system of complex nonlinear models. Appl. Math. And Nonlinear Sci. 2021, 6, 29–42. [Google Scholar]
- Broer, L.J.F. Approximate equations for long water waves. Appl. Sci. Res. 1975, 31, 377–395. [Google Scholar] [CrossRef]
- Yu, X.Q.; Kong, S. Travelling wave solutions to the proximate equations for LWSW. Appl. Math. Nonlinear Sci. 2021, 6, 335–346. [Google Scholar] [CrossRef]
- Whitham, G.B. Variational methods and applications to water waves. Proc. R. Soc. A 1967, 299, 6–25. [Google Scholar]
- Kuchment, P.A. Floquet Theory for Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Novikov, S.P. (Ed.) Theory of Solitons: The Inverse Scattering Method; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Mitropolski, Y.A.; Bogoliubov, N.N., Jr.; Prykarpatsky, A.K.; Samoilenko, V.H. Integrable Dynamical Systems; Naukova dumka Publ.: Kiev, Ukraine, 1987. (In Russian) [Google Scholar]
- Reyman, A.G.; Semenov-Tian-Shansky, M.A. Integrable Systems; The Computer Research Institute Publ.: Izhvek, Russia, 2003. [Google Scholar]
- Calogero, F.; Degasperis, A. Spectral Transform and Solitons; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Faddeev, L.D.; Takhtadjian, L.A. Hamiltonian Approach in Soliton Theory; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Newell Alan, C. Solitons in Mathematics and Physics; SIAM: Philadelphia, PA, USA, 1985. [Google Scholar]
- Błaszak, M. Multi-Hamiltonian Theory of Dynamical Systems; Springer: Berlin, Germany, 1998. [Google Scholar]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Fuchssteiner, B.; Fokas, A. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. 4D 1981, 4, 47–66. [Google Scholar] [CrossRef]
- Bellman, R.E. Dynamic Programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef]
- Pontryagin, L.S.; Boltyanski, V.G.; Gamkrelidze, R.S.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes. Interscience 1963, 43, 515–524. [Google Scholar]
- Egorov, Y.V.; Shubin, M.A. Foundations of the Classical Theory of Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Willox, R.; Hereman, W.; Verheest, F. Complete Integrability of a Modified Vector Derivative Nonlinear Schrodinger Equation. Phys. Scr. 1995, 52, 21–26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prykarpatsky, Y.A.; Urbaniak, I.; Kycia, R.A.; Prykarpatski, A.K. Dark Type Dynamical Systems: The Integrability Algorithm and Applications. Algorithms 2022, 15, 266. https://doi.org/10.3390/a15080266
Prykarpatsky YA, Urbaniak I, Kycia RA, Prykarpatski AK. Dark Type Dynamical Systems: The Integrability Algorithm and Applications. Algorithms. 2022; 15(8):266. https://doi.org/10.3390/a15080266
Chicago/Turabian StylePrykarpatsky, Yarema A., Ilona Urbaniak, Radosław A. Kycia, and Anatolij K. Prykarpatski. 2022. "Dark Type Dynamical Systems: The Integrability Algorithm and Applications" Algorithms 15, no. 8: 266. https://doi.org/10.3390/a15080266
APA StylePrykarpatsky, Y. A., Urbaniak, I., Kycia, R. A., & Prykarpatski, A. K. (2022). Dark Type Dynamical Systems: The Integrability Algorithm and Applications. Algorithms, 15(8), 266. https://doi.org/10.3390/a15080266