An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type
Abstract
:1. Introduction
2. Direct Operator Method for Solving Linear and Nonlinear VFIE
2.1. Linear VFIE
2.2. Nonlinear VFIE
3. Solving VFIE of Convolution Type
Algorithm 1: Algorithm for the implementation of the Laplace transform to construct the inverse Volterra operator and the Theorems 1 and 2 to obtain the exact solution of the linear (12) and nonlinear VFIE (20), respectively. |
input compute linear case : if compute else print ’There is no unique solution’ end nonlinear case : solve the system for every solution compute if y satisfies print the solution end end |
4. Examples
4.1. Example 1
4.2. Example 2
4.3. Example 3
4.4. Example 4
4.5. Example 5
4.6. Example 6
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IE | Integral Equation(s) |
VIE | Volterra Integral Equation(s) |
VFIE | Volterra–Fredholm Integral Equation(s) |
CVIE | Convolution-type Volterra Integral Equation(s) |
CVFIE | Convolution-type Volterra-Fredholm Integral Equation(s) |
References
- Tsokos, C.P.; Padgett, W.J. Random Integral Equations with Applications to Life Sciences and Engineering; Academic Press Inc.: London, UK, 1974; pp. ii–iv, ix–x, 1–278. [Google Scholar]
- Prüss, J. Evolutionary Integral Equations and Applications; Springer: Basel, Switzerland, 1993. [Google Scholar]
- Warnick, K.F. Numerical Analysis for Electromagnetic Integral Equations; Artech House: Norwood, MA, USA, 2008. [Google Scholar]
- Amin, R.; Nazir, S.; García-Magariño, I. Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via Haar wavelet for dense sensor networks in emerging telecommunications. Trans. Emerg. Telecommun. Technol. 2020, 33, e3877. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Linear and Nonlinear Integral Equations; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Mamedov, Y.D.; Musaev, V.M. On the theory of the solutions of nonlinear operator equations. Dokl. Akad. Nauk SSSR 1970, 195, 36–39. [Google Scholar]
- Ashirov, S.; Mamedov, Y.D. Investigation of solutions of nonlinear Volterra-Fredholm operator equations. Dokl. Akad. Nauk SSSR 1976, 229, 265–268. [Google Scholar]
- Zaghrout, A.S.S. On Volterra-Fredholm integral equations. Period Math. Hung. 1993, 26, 55–64. [Google Scholar] [CrossRef]
- Rao, V.S.H. On random solutions of Volterra-Fredholm integral equations. Pac. J. Math. 1983, 108, 397–405. [Google Scholar] [CrossRef]
- Yalçinbaş, S. Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 2002, 127, 195–206. [Google Scholar] [CrossRef]
- Balachandran, K.; Sumathy, K.; Kuo, H.H. Existence of Solutions of General Nonlinear Stochastic Volterra Fredholm Integral Equations. Stoch. Anal. Appl. 2005, 23, 827–851. [Google Scholar] [CrossRef]
- Mahmoudi, Y. Taylor polynomial solution of non-linear Volterra-Fredholm integral equation. Int. J. Comput. Math. 2005, 82, 881–887. [Google Scholar] [CrossRef]
- Yousefi, S.; Razzaghi, M. Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simul. 2005, 70, 1–8. [Google Scholar] [CrossRef]
- Cui, M.; Du, H. Representation of exact solution for the nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 2006, 182, 1795–1802. [Google Scholar] [CrossRef]
- Li, X.F.; Fang, M. Modified method for determining an approximate solution of the Fredholm–Volterra integral equations by Taylor’s expansion. Int. J. Comput. Math. 2006, 83, 637–649. [Google Scholar] [CrossRef]
- Babolian, E.; Fattahzadeh, F.; Golpar Raboky, E. A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type. Appl. Math. Comput. 2007, 189, 641–646. [Google Scholar] [CrossRef]
- Bildik, N.; Inc, M. Modified decomposition method for nonlinear Volterra-Fredholm integral equations. Chaos Solitons Fract. 2007, 33, 308–313. [Google Scholar] [CrossRef]
- Ghasemi, M.; Kajani, M.T.; Babolian, E. Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method. Appl. Math. Comput. 2007, 188, 446–449. [Google Scholar] [CrossRef]
- Ordokhani, Y.; Razzaghi, M. Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions. Appl. Math. Lett. 2008, 21, 4–9. [Google Scholar] [CrossRef]
- Pachpatte, B.G. On a nonlinear Volterra-Fredholm integral equation. Sarajevo J. Math. 2008, 4, 61–71. [Google Scholar]
- Caliò, F.; Fernández Muñoz, M.V.; Marchetti, E. Direct and iterative methods for the numerical solution of mixed integral equations. Appl. Math. Comput. 2010, 216, 3739–3746. [Google Scholar] [CrossRef]
- Hendi, F.A.; Albugami, A.M. Numerical solution for Fredholm–Volterra integral equation of the second kind by using collocation and Galerkin methods. J. King Saud Univ. Sci. 2010, 22, 37–40. [Google Scholar] [CrossRef]
- Maleknejad, K.; Almasieh, H.; Roodakiand, M. Triangular functions (TF) method for the solution of nonlinear Volterra-Fredholm integral equations. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3293–3298. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Behzadi, S.S. Numerical solution of nonlinear Volterra-Fredholm integro-differential equations using Homotopy Analysis Method. J. Appl. Math. Comput. 2011, 37, 1–12. [Google Scholar] [CrossRef]
- Attari, H.; Yazdani, A. A Computational Method for Fuzzy Volterra-Fredholm Integral Equations. Fuzzy Inf. Eng. 2011, 3, 147–156. [Google Scholar] [CrossRef]
- Marzban, H.R.; Tabrizidooz, H.R.; Razzaghi, M. A composite collocation method for the nonlinear mixed Volterra—Fredholm Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1186–1194. [Google Scholar] [CrossRef]
- Shahsavaran, A. Numerical Solution of Nonlinear Fredholm-Volterra Integtral Equations via Piecewise Constant Function by Collocation Method. Am. J. Comput. Math. 2011, 1, 134–138. [Google Scholar] [CrossRef]
- El-Ameen, M.A.; El-Kady, M. A New Direct Method for Solving Nonlinear Volterra-Fredholm-Hammerstein Integral Equations via Optimal Control Problem. J. Appl. Math. 2012, 2012, 714973. [Google Scholar] [CrossRef]
- Caliò, F.; Garralda-Guillem, A.I.; Marchetti, E.; Ruiz Galán, M. About some numerical approaches for mixed integral equations. Appl. Math. Comput. 2012, 219, 464–474. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, W. An approximate solution for a mixed linear Volterra-Fredholm integral equation. Appl. Math. Lett. 2012, 25, 1131–1134. [Google Scholar] [CrossRef]
- Dastjerdi, H.L.; Ghaini, F.M.M. Numerical solution of Volterra-Fredholm integral equations by moving least square method and Chebyshev polynomials. Appl. Math. Model. 2012, 36, 3283–3288. [Google Scholar] [CrossRef]
- Ezzati, R.; Mokhtari, F.; Maghasedi, M. Numerical Solution of Volterra-Fredholm Integral Equations with the Help of Inverse and Direct Discrete Fuzzy Transforms and Collocation Technique. Int. J. Ind. Math. 2012, 4, 221–229. [Google Scholar]
- Gámez, D. Analysis of the Error in a Numerical Method Used to Solve Nonlinear Mixed Fredholm-Volterra-Hammerstein Integral Equations. J. Funct. Spaces Appl. 2012, 2012, 242870. [Google Scholar] [CrossRef]
- Maleknejad, K.; Hashemizadeh, E.; Basirat, B. Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 52–61. [Google Scholar] [CrossRef]
- Parand, K.; Rad, J.A. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. Appl. Math. Comput. 2012, 218, 5292–5309. [Google Scholar] [CrossRef]
- Shali, J.; Darania, P.; Akbarfam, A. Collocation Method for Nonlinear Volterra-Fredholm Integral Equations. Open J. Appl. Sci. 2012, 2, 115–121. [Google Scholar] [CrossRef]
- Shamloo, A.; Shahkar, S.; Madadi, A. Numerical Solution of the Fredholme-Volterra Integral Equation by the Sinc Function. Am. J. Comput. Math. 2012, 2, 136–142. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Nowak, I.; Słota, D.; Wituła, R. A study of the convergence of and error estimation for the homotopy perturbation method for the Volterra-Fredholm integral equations. Appl. Math. Lett. 2013, 26, 165–169. [Google Scholar] [CrossRef]
- Al-Jarrah, Y.; Lin, E. Numerical Solution of Fredholm-Volterra Integral Equations by Using Scaling Function Interpolation Method. Appl. Math. 2013, 4, 204–209. [Google Scholar] [CrossRef]
- Mesgarani, H.; Mollapourasl, R. Theoretical investigation on error analysis of Sinc approximation for mixed Volterra-Fredholm integral equation. Comput. Math. Math. Phys. 2013, 53, 530–539. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hoseini, A.A. “Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of…“ [Alexandria Eng. J. 52 (2013) 551–555]. Alex. Eng. J. 2019, 58, 1099–1102. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Q. Lagrange collocation method for solving Volterra-Fredholm integral equations. Appl. Math. Comput. 2013, 219, 10434–10440. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Q.; Guan, K. Iterative method and convergence analysis for a kind of mixed nonlinear Volterra-Fredholm integral equation. Appl. Math. Comput. 2013, 225, 631–637. [Google Scholar] [CrossRef]
- Căruntu, B.; Bota, C. Polynomial least squares method for the solution of nonlinear Volterra-Fredholm integral equations. Math. Probl. Eng. 2014, 2014, 147079. [Google Scholar] [CrossRef]
- Mashayekhi, S.; Razzaghi, M.; Tripak, O. Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials. Sci. World J. 2014, 2014, 413623. [Google Scholar] [CrossRef]
- Wang, X. A New Wavelet Method for Solving a Class of Nonlinear Volterra-Fredholm Integral Equations. Abstr. Appl. Anal. 2014, 2014, 975985. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Q. Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations. J. Comput. Appl. Math. 2014, 260, 294–300. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, K.; Chen, S. Least squares approximation method for the solution of Volterra-Fredholm integral equations. J. Comput. Appl. Math. 2014, 272, 141–147. [Google Scholar] [CrossRef]
- Zulkarnain, F.; Eshkuvatov, Z.; Muminov, Z.; Nik Long, N. Modified Decomposition Method for Solving Nonlinear Volterra-Fredholm Integral Equations. In Proceedings of the International Conference on Mathematical Sciences and Statistics, Kuala Lumpur, Malaysia, 5–7 February 2013; Kilicman, A., Leong, W., Eshkuvatov, Z., Eds.; Springer: Singapore, 2014; pp. 103–110. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Shahmorad, S.; Talati, F. A matrix based method for two dimensional nonlinear Volterra-Fredholm integral equations. Numer. Algor. 2015, 68, 511–529. [Google Scholar] [CrossRef]
- Micula, S. An iterative numerical method for Fredholm–Volterra integral equations of the second kind. Appl. Math. Comput. 2015, 270, 935–942. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hadadiyan, E. Applying the modified block-pulse functions to solve the three-dimensional Volterra-Fredholm integral equations. Appl. Math. Comput. 2015, 265, 759–767. [Google Scholar] [CrossRef]
- Das, P.; Nelakanti, G. Convergence Analysis of Legendre Spectral Galerkin Method for Volterra-Fredholm-Hammerstein Integral Equations. In Mathematical Analysis and its Applications; Agrawal, P., Mohapatra, R., Singh, U., Srivastava, H., Eds.; Springer: New Delhi, India, 2015; pp. 3–15. [Google Scholar] [CrossRef]
- Tang, X. Numerical solution of Volterra-Fredholm integral equations using parameterized pseudospectral integration matrices. Appl. Math. Comput. 2015, 270, 744–755. [Google Scholar] [CrossRef]
- Gouyandeh, Z.; Allahviranloo, T.; Armand, A. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via Tau-collocation method with convergence analysis. J. Comput. Appl. Math. 2016, 308, 435–446. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hadadiyan, E. Numerical solution of Volterra-Fredholm integral equations via modification of hat functions. Appl. Math. Comput. 2016, 280, 110–123. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hoseini, S.F. Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations. Appl. Math. Comput. 2016, 273, 637–644. [Google Scholar] [CrossRef]
- Berenguer, M.I.; Gámez, D. Study on convergence and error of a numerical method for solving systems of nonlinear Fredholm-Volterra integral equations of Hammerstein type. Appl. Anal. 2017, 96, 516–527. [Google Scholar] [CrossRef]
- Dahaghin, M.S.; Eskandari, S. Solving two-dimensional Volterra-Fredholm integral equations of the second kind by using Bernstein polynomials. Appl. Math. J. Chin. Univ. 2017, 32, 68–78. [Google Scholar] [CrossRef]
- Davaeifar, S.; Rashidinia, J. Boubaker polynomials collocation approach for solving systems of nonlinear Volterra-Fredholm integral equations. J. Taibah Univ. Sci. 2017, 11, 1182–1199. [Google Scholar] [CrossRef]
- Fallahpour, M.; Khodabin, M.; Maleknejad, K. Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions. Cogent Math. 2017, 4, 1296750. [Google Scholar] [CrossRef]
- Hesameddini, E.; Shahbazi, M. Solving system of Volterra-Fredholm integral equations with Bernstein polynomials and hybrid Bernstein Block-Pulse functions. J. Comput. Appl. Math. 2017, 315, 182–194. [Google Scholar] [CrossRef]
- Hesameddini, E.; Khorramizadeh, M.; Shahbazi, M. Bernstein polynomials method for solving Volterra-Fredholm integral equations. Bull. Mathématique Société Des Sci. Mathématiques Roum. 2017, 60, 59–68. [Google Scholar]
- Ma, Y.; Huang, J.; Wang, C. Numerical Solutions of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations Using Sinc Nyström Method. In Information Technology and Intelligent Transportation Systems; Balas, V., Jain, L., Zhao, X., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2017; Volume 455, pp. 187–194. [Google Scholar] [CrossRef]
- Mirzaee, F. Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials. Comput. Methods Differ. Equ. 2017, 5, 88–102. [Google Scholar]
- Shiralashetti, S.C.; Mundewadi, R.A. Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations Using Haar Wavelet Collocation Method. Bull. Math. Sci. Appl. 2017, 18, 51. [Google Scholar] [CrossRef]
- Xie, J.; Huang, Q.; Zhao, F. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on Block Pulse functions. J. Comput. Appl. Math. 2017, 317, 565–572. [Google Scholar] [CrossRef]
- Erfanian, M. The approximate solution of nonlinear mixed Volterra-Fredholm-Hammerstein integral equations with RH wavelet bases in a complex plane. Math. Methods Appl. Sci. 2018, 41, 8942–8952. [Google Scholar] [CrossRef]
- Erfanian, M.; Zeidabadi, H. Using of Bernstein spectral Galerkin method for solving of weakly singular Volterra-Fredholm integral equations. Math. Sci. 2018, 12, 103–109. [Google Scholar] [CrossRef]
- Negarchi, N.; Nouri, K. Numerical solution of Volterra-Fredholm integral equations using the collocation method based on a special form of the Müntz–Legendre polynomials. J. Comput. Appl. Math. 2018, 344, 15–24. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Agarwal, R.P.; Karapınar, E.; Kumari, P.S. Solutions of the Nonlinear Integral Equation and Fractional Differential Equation Using the Technique of a Fixed Point with a Numerical Experiment in Extended b-Metric Space. Symmetry 2019, 11, 686. [Google Scholar] [CrossRef]
- Van Ninh, K.; Binh, N.T. Analytical Solution of Volterra-Fredholm Integral Equations Using Hybrid of the Method of Contractive Mapping and Parameter Continuation Method. Int. J. Appl. Comput. Math 2019, 5, 76. [Google Scholar] [CrossRef]
- Sabzevari, M. A review on “Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of …” [Alexandria Eng. J. 52 (2013) 551–555]. Alex. Eng. J. 2019, 58, 1099–1102. [Google Scholar] [CrossRef]
- Tomasiello, S.; Macías-Díaz, J.E.; Khastan, A.; Alijani, Z. New sinusoidal basis functions and a neural network approach to solve nonlinear Volterra-Fredholm integral equations. Neural Comput. Applic. 2019, 31, 4865–4878. [Google Scholar] [CrossRef]
- Amiri, S.; Hajipour, M.; Baleanu, D. A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 2020, 370, 124915. [Google Scholar] [CrossRef]
- Al-Bugami, A.; Al-Juaid, J. Runge-Kutta Method and Bolck by Block Method to Solve Nonlinear Fredholm-Volterra Integral Equation with Continuous Kernel. J. Appl. Math. Phys. 2020, 8, 2043–2054. [Google Scholar] [CrossRef]
- Deniz, S. Optimal perturbation iteration technique for solving nonlinear Volterra-Fredholm integral equations. Math. Methods Appl. Sci. 2020, 1–7. [Google Scholar] [CrossRef]
- Du, H.; Chen, Z. A new reproducing kernel method with higher convergence order for solving a Volterra-Fredholm integral equation. Appl. Math. Lett. 2020, 102, 106117. [Google Scholar] [CrossRef]
- Georgieva, A.; Hristova, S. Homotopy Analysis Method to Solve Two-Dimensional Nonlinear Volterra-Fredholm Fuzzy Integral Equations. Fractal Fract. 2020, 4, 9. [Google Scholar] [CrossRef]
- Bin Jebreen, H. On the Multiwavelets Galerkin Solution of the Volterra-Fredholm Integral Equations by an Efficient Algorithm. J. Math. 2020, 2020, 2672683. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Hafez, R.M. Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis. Arab. J. Math. 2020, 9, 471–480. [Google Scholar] [CrossRef]
- Abdou, M.A.; Elhamaky, M.N.; Soliman, A.A.; Mosa, G.A. The behaviour of the maximum and minimum error for Fredholm-Volterra integral equations in two-dimensional space. J. Interdiscip. Math. 2021, 24, 2049–2070. [Google Scholar] [CrossRef]
- Dobriţoiu, M. The Existence and Uniqueness of the Solution of a Nonlinear Fredholm–Volterra Integral Equation with Modified Argument via Geraghty Contractions. Mathematics 2021, 9, 29. [Google Scholar] [CrossRef]
- Esmaeili, H.; Rostami, M.; Hooshyarbakhsh, V. Numerical solution of Volterra-Fredholm integral equation via hyperbolic basis functions. Int. J. Numer. Model. 2021, 34, e2823. [Google Scholar] [CrossRef]
- Geçmen, M.Z.; Çelik, E. Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials. Math. Methods Appl. Sci. 2021, 44, 11166–11173. [Google Scholar] [CrossRef]
- He, J.-H.; Taha, M.H.; Ramadan, M.A.; Moatimid, G.M. Improved Block-Pulse Functions for Numerical Solution of Mixed Volterra-Fredholm Integral Equations. Axioms 2021, 10, 200. [Google Scholar] [CrossRef]
- Mohamed, A.S. Spectral Solutions with Error Analysis of Volterra-Fredholm Integral Equation via Generalized Lucas Collocation Method. Int. J. Appl. Comput. Math 2021, 7, 178. [Google Scholar] [CrossRef]
- Xu, M.; Niu, J.; Tohidi, E.; Hou, J.; Jiang, D. A new least-squares-based reproducing kernel method for solving regular and weakly singular Volterra-Fredholm integral equations with smooth and nonsmooth solutions. Math. Methods Appl. Sci. 2021, 44, 10772–10784. [Google Scholar] [CrossRef]
- Hamani, F.; Rahmoune, A. Solving Nonlinear Volterra-Fredholm Integral Equations using an Accurate Spectral Collocation Method. Tatra Mt. Math. Publ. 2021, 80, 35–52. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Osheba, H.S.; Hadhoud, A.R. A numerical method based on hybrid orthonormal Bernstein and improved block-pulse functions for solving Volterra-Fredholm integral equations. Numer. Methods Partial. Differ. Equ. 2022, 1–13. [Google Scholar] [CrossRef]
- Pachpatte, B.G. On mixed Volterra-Fredholm type integral equations. Indian J. Pure Appl. Math. 1986, 17, 488–496. [Google Scholar]
- Kauthen, J.P. Continuous time collocation methods for Volterra-Fredholm integral equations. Numer. Math. 1989, 56, 409–424. [Google Scholar] [CrossRef]
- Brunner, H. On the Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations by Collocation Methods. SIAM J. Numer. Anal. 1990, 27, 987–1000. [Google Scholar] [CrossRef]
- Rizk, M.M.; Zaher, S.L. On the approximate solution of nonlinear Volterra-Fredholm integral equations on a complex domain by Dzyadyk’s method. Ukr. Math. J. 1997, 49, 1705–1717. [Google Scholar] [CrossRef]
- Maleknejad, K.; Hadizadeh, M. A new computational method for Volterra-Fredholm integral equations. Comput. Math. Appl. 1999, 37, 1–8. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A reliable treatment for mixed Volterra-Fredholm integral equations. Appl. Math. Comput. 2002, 127, 405–414. [Google Scholar] [CrossRef]
- Banifatemi, E.; Razzaghi, M.; Yousefi, S. Two-dimensional Legendre wavelets method for the mixed Volterra-Fredholm integral equations. J. Vib. Control 2007, 13, 1667–1675. [Google Scholar] [CrossRef]
- Berenguer, M.I.; Gámez, D.; López Linares, A.J. Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm–Volterra integro-differential equation. J. Comput. Appl. Math. 2013, 252, 52–61. [Google Scholar] [CrossRef]
- Dong, C.; Chen, Z.; Jiang, W. A modified homotopy perturbation method for solving the nonlinear mixed Volterra-Fredholm integral equation. J. Comput. Appl. Math. 2013, 239, 359–366. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hadadiyan, E. Three-dimensional triangular functions and their applications for solving nonlinear mixed Volterra-Fredholm integral equations. Alex. Eng. J. 2016, 55, 2943–2952. [Google Scholar] [CrossRef]
- Micula, S. On Some Iterative Numerical Methods for Mixed Volterra-Fredholm Integral Equations. Symmetry 2019, 11, 1200. [Google Scholar] [CrossRef]
- Micula, S. Numerical Solution of Two-Dimensional Fredholm–Volterra Integral Equations of the Second Kind. Symmetry 2021, 13, 1326. [Google Scholar] [CrossRef]
- El Majouti, Z.; El Jid, R.; Hajjaj, A. Numerical solution for three-dimensional nonlinear mixed Volterra-Fredholm integral equations via modified moving least-square method. Int. J. Comput. Math. 2021. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Manzhirov, A.V. Handbook of Integral Equations, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Parasidis, I.N.; Providas, E. Extension Operator Method for the Exact Solution of Integro-Differential Equations. In Contributions in Mathematics and Engineering: In Honor of Constantin Carathéodory; Pardalos, P.M., Rassias, T.M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 473–496. [Google Scholar] [CrossRef]
- Parasidis, I.N.; Providas, E. On the Exact Solution of Nonlinear Integro-Differential Equations. In Applications of Nonlinear Analysis; Rassias, T., Ed.; Springer: Cham, Switzerland, 2018; pp. 591–609. [Google Scholar] [CrossRef]
- Baiburin, M.M.; Providas, E. Exact Solution to Systems of Linear First-Order Integro-Differential Equations with Multipoint and Integral Conditions. In Mathematical Analysis and Applications; Rassias, T.M., Pardalos, P.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–16. [Google Scholar] [CrossRef]
- Providas, E. Approximate Solution of Fredholm Integral and Integro-Differential Equations with Non-Separable Kernels. In Approximation and Computation in Science and Engineering; Daras, N.J., Rassias, T.M., Eds.; Springer: Cham, Switzerland, 2022; pp. 693–708. [Google Scholar] [CrossRef]
- Kreyszig, E. Advanced Engineering Mathematics, 7th ed.; John Wiley & Sons.: Singapore, 1993. [Google Scholar]
- Rezaei, H.; Jung, S.M.; Rassias, T.M. Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Kagiwada, H.H.; Kalaba, R.E. An initial value method for fredholm integral equations of convolution type. Int. J. Comput. Math. 1968, 2, 143–155. [Google Scholar] [CrossRef]
- Tuna, M.; Kirca, M. Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 2016, 105, 80–92. [Google Scholar] [CrossRef]
- Providas, E. On the exact solution of nonlocal Euler-Bernoulli beam equations via a direct approach for Volterra-Fredholm integro-differential equations. Appliedmath, 2022; under review. [Google Scholar]
- Providas, E. Closed-form solution of the bending two-phase integral model of Euler-Bernoulli nanobeams. Algorithms 2022, 15, 151. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Providas, E. An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type. Algorithms 2022, 15, 203. https://doi.org/10.3390/a15060203
Providas E. An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type. Algorithms. 2022; 15(6):203. https://doi.org/10.3390/a15060203
Chicago/Turabian StyleProvidas, Efthimios. 2022. "An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type" Algorithms 15, no. 6: 203. https://doi.org/10.3390/a15060203
APA StyleProvidas, E. (2022). An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type. Algorithms, 15(6), 203. https://doi.org/10.3390/a15060203