An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type
Abstract
1. Introduction
2. Direct Operator Method for Solving Linear and Nonlinear VFIE
2.1. Linear VFIE
2.2. Nonlinear VFIE
3. Solving VFIE of Convolution Type
Algorithm 1: Algorithm for the implementation of the Laplace transform to construct the inverse Volterra operator and the Theorems 1 and 2 to obtain the exact solution of the linear (12) and nonlinear VFIE (20), respectively. |
input compute linear case : if compute else print ’There is no unique solution’ end nonlinear case : solve the system for every solution compute if y satisfies print the solution end end |
4. Examples
4.1. Example 1
4.2. Example 2
4.3. Example 3
4.4. Example 4
4.5. Example 5
4.6. Example 6
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IE | Integral Equation(s) |
VIE | Volterra Integral Equation(s) |
VFIE | Volterra–Fredholm Integral Equation(s) |
CVIE | Convolution-type Volterra Integral Equation(s) |
CVFIE | Convolution-type Volterra-Fredholm Integral Equation(s) |
References
- Tsokos, C.P.; Padgett, W.J. Random Integral Equations with Applications to Life Sciences and Engineering; Academic Press Inc.: London, UK, 1974; pp. ii–iv, ix–x, 1–278. [Google Scholar]
- Prüss, J. Evolutionary Integral Equations and Applications; Springer: Basel, Switzerland, 1993. [Google Scholar]
- Warnick, K.F. Numerical Analysis for Electromagnetic Integral Equations; Artech House: Norwood, MA, USA, 2008. [Google Scholar]
- Amin, R.; Nazir, S.; García-Magariño, I. Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via Haar wavelet for dense sensor networks in emerging telecommunications. Trans. Emerg. Telecommun. Technol. 2020, 33, e3877. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Linear and Nonlinear Integral Equations; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Mamedov, Y.D.; Musaev, V.M. On the theory of the solutions of nonlinear operator equations. Dokl. Akad. Nauk SSSR 1970, 195, 36–39. [Google Scholar]
- Ashirov, S.; Mamedov, Y.D. Investigation of solutions of nonlinear Volterra-Fredholm operator equations. Dokl. Akad. Nauk SSSR 1976, 229, 265–268. [Google Scholar]
- Zaghrout, A.S.S. On Volterra-Fredholm integral equations. Period Math. Hung. 1993, 26, 55–64. [Google Scholar] [CrossRef]
- Rao, V.S.H. On random solutions of Volterra-Fredholm integral equations. Pac. J. Math. 1983, 108, 397–405. [Google Scholar] [CrossRef][Green Version]
- Yalçinbaş, S. Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 2002, 127, 195–206. [Google Scholar] [CrossRef]
- Balachandran, K.; Sumathy, K.; Kuo, H.H. Existence of Solutions of General Nonlinear Stochastic Volterra Fredholm Integral Equations. Stoch. Anal. Appl. 2005, 23, 827–851. [Google Scholar] [CrossRef]
- Mahmoudi, Y. Taylor polynomial solution of non-linear Volterra-Fredholm integral equation. Int. J. Comput. Math. 2005, 82, 881–887. [Google Scholar] [CrossRef]
- Yousefi, S.; Razzaghi, M. Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simul. 2005, 70, 1–8. [Google Scholar] [CrossRef]
- Cui, M.; Du, H. Representation of exact solution for the nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 2006, 182, 1795–1802. [Google Scholar] [CrossRef]
- Li, X.F.; Fang, M. Modified method for determining an approximate solution of the Fredholm–Volterra integral equations by Taylor’s expansion. Int. J. Comput. Math. 2006, 83, 637–649. [Google Scholar] [CrossRef]
- Babolian, E.; Fattahzadeh, F.; Golpar Raboky, E. A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type. Appl. Math. Comput. 2007, 189, 641–646. [Google Scholar] [CrossRef]
- Bildik, N.; Inc, M. Modified decomposition method for nonlinear Volterra-Fredholm integral equations. Chaos Solitons Fract. 2007, 33, 308–313. [Google Scholar] [CrossRef]
- Ghasemi, M.; Kajani, M.T.; Babolian, E. Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method. Appl. Math. Comput. 2007, 188, 446–449. [Google Scholar] [CrossRef]
- Ordokhani, Y.; Razzaghi, M. Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions. Appl. Math. Lett. 2008, 21, 4–9. [Google Scholar] [CrossRef]
- Pachpatte, B.G. On a nonlinear Volterra-Fredholm integral equation. Sarajevo J. Math. 2008, 4, 61–71. [Google Scholar]
- Caliò, F.; Fernández Muñoz, M.V.; Marchetti, E. Direct and iterative methods for the numerical solution of mixed integral equations. Appl. Math. Comput. 2010, 216, 3739–3746. [Google Scholar] [CrossRef]
- Hendi, F.A.; Albugami, A.M. Numerical solution for Fredholm–Volterra integral equation of the second kind by using collocation and Galerkin methods. J. King Saud Univ. Sci. 2010, 22, 37–40. [Google Scholar] [CrossRef]
- Maleknejad, K.; Almasieh, H.; Roodakiand, M. Triangular functions (TF) method for the solution of nonlinear Volterra-Fredholm integral equations. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3293–3298. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Behzadi, S.S. Numerical solution of nonlinear Volterra-Fredholm integro-differential equations using Homotopy Analysis Method. J. Appl. Math. Comput. 2011, 37, 1–12. [Google Scholar] [CrossRef]
- Attari, H.; Yazdani, A. A Computational Method for Fuzzy Volterra-Fredholm Integral Equations. Fuzzy Inf. Eng. 2011, 3, 147–156. [Google Scholar] [CrossRef]
- Marzban, H.R.; Tabrizidooz, H.R.; Razzaghi, M. A composite collocation method for the nonlinear mixed Volterra—Fredholm Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1186–1194. [Google Scholar] [CrossRef]
- Shahsavaran, A. Numerical Solution of Nonlinear Fredholm-Volterra Integtral Equations via Piecewise Constant Function by Collocation Method. Am. J. Comput. Math. 2011, 1, 134–138. [Google Scholar] [CrossRef]
- El-Ameen, M.A.; El-Kady, M. A New Direct Method for Solving Nonlinear Volterra-Fredholm-Hammerstein Integral Equations via Optimal Control Problem. J. Appl. Math. 2012, 2012, 714973. [Google Scholar] [CrossRef]
- Caliò, F.; Garralda-Guillem, A.I.; Marchetti, E.; Ruiz Galán, M. About some numerical approaches for mixed integral equations. Appl. Math. Comput. 2012, 219, 464–474. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, W. An approximate solution for a mixed linear Volterra-Fredholm integral equation. Appl. Math. Lett. 2012, 25, 1131–1134. [Google Scholar] [CrossRef]
- Dastjerdi, H.L.; Ghaini, F.M.M. Numerical solution of Volterra-Fredholm integral equations by moving least square method and Chebyshev polynomials. Appl. Math. Model. 2012, 36, 3283–3288. [Google Scholar] [CrossRef]
- Ezzati, R.; Mokhtari, F.; Maghasedi, M. Numerical Solution of Volterra-Fredholm Integral Equations with the Help of Inverse and Direct Discrete Fuzzy Transforms and Collocation Technique. Int. J. Ind. Math. 2012, 4, 221–229. [Google Scholar]
- Gámez, D. Analysis of the Error in a Numerical Method Used to Solve Nonlinear Mixed Fredholm-Volterra-Hammerstein Integral Equations. J. Funct. Spaces Appl. 2012, 2012, 242870. [Google Scholar] [CrossRef][Green Version]
- Maleknejad, K.; Hashemizadeh, E.; Basirat, B. Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 52–61. [Google Scholar] [CrossRef]
- Parand, K.; Rad, J.A. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. Appl. Math. Comput. 2012, 218, 5292–5309. [Google Scholar] [CrossRef]
- Shali, J.; Darania, P.; Akbarfam, A. Collocation Method for Nonlinear Volterra-Fredholm Integral Equations. Open J. Appl. Sci. 2012, 2, 115–121. [Google Scholar] [CrossRef]
- Shamloo, A.; Shahkar, S.; Madadi, A. Numerical Solution of the Fredholme-Volterra Integral Equation by the Sinc Function. Am. J. Comput. Math. 2012, 2, 136–142. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Nowak, I.; Słota, D.; Wituła, R. A study of the convergence of and error estimation for the homotopy perturbation method for the Volterra-Fredholm integral equations. Appl. Math. Lett. 2013, 26, 165–169. [Google Scholar] [CrossRef]
- Al-Jarrah, Y.; Lin, E. Numerical Solution of Fredholm-Volterra Integral Equations by Using Scaling Function Interpolation Method. Appl. Math. 2013, 4, 204–209. [Google Scholar] [CrossRef]
- Mesgarani, H.; Mollapourasl, R. Theoretical investigation on error analysis of Sinc approximation for mixed Volterra-Fredholm integral equation. Comput. Math. Math. Phys. 2013, 53, 530–539. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hoseini, A.A. “Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of…“ [Alexandria Eng. J. 52 (2013) 551–555]. Alex. Eng. J. 2019, 58, 1099–1102. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Q. Lagrange collocation method for solving Volterra-Fredholm integral equations. Appl. Math. Comput. 2013, 219, 10434–10440. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Q.; Guan, K. Iterative method and convergence analysis for a kind of mixed nonlinear Volterra-Fredholm integral equation. Appl. Math. Comput. 2013, 225, 631–637. [Google Scholar] [CrossRef]
- Căruntu, B.; Bota, C. Polynomial least squares method for the solution of nonlinear Volterra-Fredholm integral equations. Math. Probl. Eng. 2014, 2014, 147079. [Google Scholar] [CrossRef]
- Mashayekhi, S.; Razzaghi, M.; Tripak, O. Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials. Sci. World J. 2014, 2014, 413623. [Google Scholar] [CrossRef]
- Wang, X. A New Wavelet Method for Solving a Class of Nonlinear Volterra-Fredholm Integral Equations. Abstr. Appl. Anal. 2014, 2014, 975985. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Q. Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations. J. Comput. Appl. Math. 2014, 260, 294–300. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, K.; Chen, S. Least squares approximation method for the solution of Volterra-Fredholm integral equations. J. Comput. Appl. Math. 2014, 272, 141–147. [Google Scholar] [CrossRef]
- Zulkarnain, F.; Eshkuvatov, Z.; Muminov, Z.; Nik Long, N. Modified Decomposition Method for Solving Nonlinear Volterra-Fredholm Integral Equations. In Proceedings of the International Conference on Mathematical Sciences and Statistics, Kuala Lumpur, Malaysia, 5–7 February 2013; Kilicman, A., Leong, W., Eshkuvatov, Z., Eds.; Springer: Singapore, 2014; pp. 103–110. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Shahmorad, S.; Talati, F. A matrix based method for two dimensional nonlinear Volterra-Fredholm integral equations. Numer. Algor. 2015, 68, 511–529. [Google Scholar] [CrossRef]
- Micula, S. An iterative numerical method for Fredholm–Volterra integral equations of the second kind. Appl. Math. Comput. 2015, 270, 935–942. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hadadiyan, E. Applying the modified block-pulse functions to solve the three-dimensional Volterra-Fredholm integral equations. Appl. Math. Comput. 2015, 265, 759–767. [Google Scholar] [CrossRef]
- Das, P.; Nelakanti, G. Convergence Analysis of Legendre Spectral Galerkin Method for Volterra-Fredholm-Hammerstein Integral Equations. In Mathematical Analysis and its Applications; Agrawal, P., Mohapatra, R., Singh, U., Srivastava, H., Eds.; Springer: New Delhi, India, 2015; pp. 3–15. [Google Scholar] [CrossRef]
- Tang, X. Numerical solution of Volterra-Fredholm integral equations using parameterized pseudospectral integration matrices. Appl. Math. Comput. 2015, 270, 744–755. [Google Scholar] [CrossRef]
- Gouyandeh, Z.; Allahviranloo, T.; Armand, A. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via Tau-collocation method with convergence analysis. J. Comput. Appl. Math. 2016, 308, 435–446. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hadadiyan, E. Numerical solution of Volterra-Fredholm integral equations via modification of hat functions. Appl. Math. Comput. 2016, 280, 110–123. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hoseini, S.F. Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations. Appl. Math. Comput. 2016, 273, 637–644. [Google Scholar] [CrossRef]
- Berenguer, M.I.; Gámez, D. Study on convergence and error of a numerical method for solving systems of nonlinear Fredholm-Volterra integral equations of Hammerstein type. Appl. Anal. 2017, 96, 516–527. [Google Scholar] [CrossRef]
- Dahaghin, M.S.; Eskandari, S. Solving two-dimensional Volterra-Fredholm integral equations of the second kind by using Bernstein polynomials. Appl. Math. J. Chin. Univ. 2017, 32, 68–78. [Google Scholar] [CrossRef]
- Davaeifar, S.; Rashidinia, J. Boubaker polynomials collocation approach for solving systems of nonlinear Volterra-Fredholm integral equations. J. Taibah Univ. Sci. 2017, 11, 1182–1199. [Google Scholar] [CrossRef]
- Fallahpour, M.; Khodabin, M.; Maleknejad, K. Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions. Cogent Math. 2017, 4, 1296750. [Google Scholar] [CrossRef]
- Hesameddini, E.; Shahbazi, M. Solving system of Volterra-Fredholm integral equations with Bernstein polynomials and hybrid Bernstein Block-Pulse functions. J. Comput. Appl. Math. 2017, 315, 182–194. [Google Scholar] [CrossRef]
- Hesameddini, E.; Khorramizadeh, M.; Shahbazi, M. Bernstein polynomials method for solving Volterra-Fredholm integral equations. Bull. Mathématique Société Des Sci. Mathématiques Roum. 2017, 60, 59–68. [Google Scholar]
- Ma, Y.; Huang, J.; Wang, C. Numerical Solutions of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations Using Sinc Nyström Method. In Information Technology and Intelligent Transportation Systems; Balas, V., Jain, L., Zhao, X., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2017; Volume 455, pp. 187–194. [Google Scholar] [CrossRef]
- Mirzaee, F. Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials. Comput. Methods Differ. Equ. 2017, 5, 88–102. [Google Scholar]
- Shiralashetti, S.C.; Mundewadi, R.A. Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations Using Haar Wavelet Collocation Method. Bull. Math. Sci. Appl. 2017, 18, 51. [Google Scholar] [CrossRef]
- Xie, J.; Huang, Q.; Zhao, F. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on Block Pulse functions. J. Comput. Appl. Math. 2017, 317, 565–572. [Google Scholar] [CrossRef]
- Erfanian, M. The approximate solution of nonlinear mixed Volterra-Fredholm-Hammerstein integral equations with RH wavelet bases in a complex plane. Math. Methods Appl. Sci. 2018, 41, 8942–8952. [Google Scholar] [CrossRef]
- Erfanian, M.; Zeidabadi, H. Using of Bernstein spectral Galerkin method for solving of weakly singular Volterra-Fredholm integral equations. Math. Sci. 2018, 12, 103–109. [Google Scholar] [CrossRef]
- Negarchi, N.; Nouri, K. Numerical solution of Volterra-Fredholm integral equations using the collocation method based on a special form of the Müntz–Legendre polynomials. J. Comput. Appl. Math. 2018, 344, 15–24. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Agarwal, R.P.; Karapınar, E.; Kumari, P.S. Solutions of the Nonlinear Integral Equation and Fractional Differential Equation Using the Technique of a Fixed Point with a Numerical Experiment in Extended b-Metric Space. Symmetry 2019, 11, 686. [Google Scholar] [CrossRef]
- Van Ninh, K.; Binh, N.T. Analytical Solution of Volterra-Fredholm Integral Equations Using Hybrid of the Method of Contractive Mapping and Parameter Continuation Method. Int. J. Appl. Comput. Math 2019, 5, 76. [Google Scholar] [CrossRef]
- Sabzevari, M. A review on “Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of …” [Alexandria Eng. J. 52 (2013) 551–555]. Alex. Eng. J. 2019, 58, 1099–1102. [Google Scholar] [CrossRef]
- Tomasiello, S.; Macías-Díaz, J.E.; Khastan, A.; Alijani, Z. New sinusoidal basis functions and a neural network approach to solve nonlinear Volterra-Fredholm integral equations. Neural Comput. Applic. 2019, 31, 4865–4878. [Google Scholar] [CrossRef]
- Amiri, S.; Hajipour, M.; Baleanu, D. A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra-Fredholm integral equations. Appl. Math. Comput. 2020, 370, 124915. [Google Scholar] [CrossRef]
- Al-Bugami, A.; Al-Juaid, J. Runge-Kutta Method and Bolck by Block Method to Solve Nonlinear Fredholm-Volterra Integral Equation with Continuous Kernel. J. Appl. Math. Phys. 2020, 8, 2043–2054. [Google Scholar] [CrossRef]
- Deniz, S. Optimal perturbation iteration technique for solving nonlinear Volterra-Fredholm integral equations. Math. Methods Appl. Sci. 2020, 1–7. [Google Scholar] [CrossRef]
- Du, H.; Chen, Z. A new reproducing kernel method with higher convergence order for solving a Volterra-Fredholm integral equation. Appl. Math. Lett. 2020, 102, 106117. [Google Scholar] [CrossRef]
- Georgieva, A.; Hristova, S. Homotopy Analysis Method to Solve Two-Dimensional Nonlinear Volterra-Fredholm Fuzzy Integral Equations. Fractal Fract. 2020, 4, 9. [Google Scholar] [CrossRef]
- Bin Jebreen, H. On the Multiwavelets Galerkin Solution of the Volterra-Fredholm Integral Equations by an Efficient Algorithm. J. Math. 2020, 2020, 2672683. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Hafez, R.M. Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis. Arab. J. Math. 2020, 9, 471–480. [Google Scholar] [CrossRef]
- Abdou, M.A.; Elhamaky, M.N.; Soliman, A.A.; Mosa, G.A. The behaviour of the maximum and minimum error for Fredholm-Volterra integral equations in two-dimensional space. J. Interdiscip. Math. 2021, 24, 2049–2070. [Google Scholar] [CrossRef]
- Dobriţoiu, M. The Existence and Uniqueness of the Solution of a Nonlinear Fredholm–Volterra Integral Equation with Modified Argument via Geraghty Contractions. Mathematics 2021, 9, 29. [Google Scholar] [CrossRef]
- Esmaeili, H.; Rostami, M.; Hooshyarbakhsh, V. Numerical solution of Volterra-Fredholm integral equation via hyperbolic basis functions. Int. J. Numer. Model. 2021, 34, e2823. [Google Scholar] [CrossRef]
- Geçmen, M.Z.; Çelik, E. Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials. Math. Methods Appl. Sci. 2021, 44, 11166–11173. [Google Scholar] [CrossRef]
- He, J.-H.; Taha, M.H.; Ramadan, M.A.; Moatimid, G.M. Improved Block-Pulse Functions for Numerical Solution of Mixed Volterra-Fredholm Integral Equations. Axioms 2021, 10, 200. [Google Scholar] [CrossRef]
- Mohamed, A.S. Spectral Solutions with Error Analysis of Volterra-Fredholm Integral Equation via Generalized Lucas Collocation Method. Int. J. Appl. Comput. Math 2021, 7, 178. [Google Scholar] [CrossRef]
- Xu, M.; Niu, J.; Tohidi, E.; Hou, J.; Jiang, D. A new least-squares-based reproducing kernel method for solving regular and weakly singular Volterra-Fredholm integral equations with smooth and nonsmooth solutions. Math. Methods Appl. Sci. 2021, 44, 10772–10784. [Google Scholar] [CrossRef]
- Hamani, F.; Rahmoune, A. Solving Nonlinear Volterra-Fredholm Integral Equations using an Accurate Spectral Collocation Method. Tatra Mt. Math. Publ. 2021, 80, 35–52. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Osheba, H.S.; Hadhoud, A.R. A numerical method based on hybrid orthonormal Bernstein and improved block-pulse functions for solving Volterra-Fredholm integral equations. Numer. Methods Partial. Differ. Equ. 2022, 1–13. [Google Scholar] [CrossRef]
- Pachpatte, B.G. On mixed Volterra-Fredholm type integral equations. Indian J. Pure Appl. Math. 1986, 17, 488–496. [Google Scholar]
- Kauthen, J.P. Continuous time collocation methods for Volterra-Fredholm integral equations. Numer. Math. 1989, 56, 409–424. [Google Scholar] [CrossRef]
- Brunner, H. On the Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations by Collocation Methods. SIAM J. Numer. Anal. 1990, 27, 987–1000. [Google Scholar] [CrossRef]
- Rizk, M.M.; Zaher, S.L. On the approximate solution of nonlinear Volterra-Fredholm integral equations on a complex domain by Dzyadyk’s method. Ukr. Math. J. 1997, 49, 1705–1717. [Google Scholar] [CrossRef]
- Maleknejad, K.; Hadizadeh, M. A new computational method for Volterra-Fredholm integral equations. Comput. Math. Appl. 1999, 37, 1–8. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A reliable treatment for mixed Volterra-Fredholm integral equations. Appl. Math. Comput. 2002, 127, 405–414. [Google Scholar] [CrossRef]
- Banifatemi, E.; Razzaghi, M.; Yousefi, S. Two-dimensional Legendre wavelets method for the mixed Volterra-Fredholm integral equations. J. Vib. Control 2007, 13, 1667–1675. [Google Scholar] [CrossRef]
- Berenguer, M.I.; Gámez, D.; López Linares, A.J. Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm–Volterra integro-differential equation. J. Comput. Appl. Math. 2013, 252, 52–61. [Google Scholar] [CrossRef]
- Dong, C.; Chen, Z.; Jiang, W. A modified homotopy perturbation method for solving the nonlinear mixed Volterra-Fredholm integral equation. J. Comput. Appl. Math. 2013, 239, 359–366. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hadadiyan, E. Three-dimensional triangular functions and their applications for solving nonlinear mixed Volterra-Fredholm integral equations. Alex. Eng. J. 2016, 55, 2943–2952. [Google Scholar] [CrossRef]
- Micula, S. On Some Iterative Numerical Methods for Mixed Volterra-Fredholm Integral Equations. Symmetry 2019, 11, 1200. [Google Scholar] [CrossRef]
- Micula, S. Numerical Solution of Two-Dimensional Fredholm–Volterra Integral Equations of the Second Kind. Symmetry 2021, 13, 1326. [Google Scholar] [CrossRef]
- El Majouti, Z.; El Jid, R.; Hajjaj, A. Numerical solution for three-dimensional nonlinear mixed Volterra-Fredholm integral equations via modified moving least-square method. Int. J. Comput. Math. 2021. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Manzhirov, A.V. Handbook of Integral Equations, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Parasidis, I.N.; Providas, E. Extension Operator Method for the Exact Solution of Integro-Differential Equations. In Contributions in Mathematics and Engineering: In Honor of Constantin Carathéodory; Pardalos, P.M., Rassias, T.M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 473–496. [Google Scholar] [CrossRef]
- Parasidis, I.N.; Providas, E. On the Exact Solution of Nonlinear Integro-Differential Equations. In Applications of Nonlinear Analysis; Rassias, T., Ed.; Springer: Cham, Switzerland, 2018; pp. 591–609. [Google Scholar] [CrossRef]
- Baiburin, M.M.; Providas, E. Exact Solution to Systems of Linear First-Order Integro-Differential Equations with Multipoint and Integral Conditions. In Mathematical Analysis and Applications; Rassias, T.M., Pardalos, P.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–16. [Google Scholar] [CrossRef]
- Providas, E. Approximate Solution of Fredholm Integral and Integro-Differential Equations with Non-Separable Kernels. In Approximation and Computation in Science and Engineering; Daras, N.J., Rassias, T.M., Eds.; Springer: Cham, Switzerland, 2022; pp. 693–708. [Google Scholar] [CrossRef]
- Kreyszig, E. Advanced Engineering Mathematics, 7th ed.; John Wiley & Sons.: Singapore, 1993. [Google Scholar]
- Rezaei, H.; Jung, S.M.; Rassias, T.M. Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Kagiwada, H.H.; Kalaba, R.E. An initial value method for fredholm integral equations of convolution type. Int. J. Comput. Math. 1968, 2, 143–155. [Google Scholar] [CrossRef]
- Tuna, M.; Kirca, M. Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 2016, 105, 80–92. [Google Scholar] [CrossRef]
- Providas, E. On the exact solution of nonlocal Euler-Bernoulli beam equations via a direct approach for Volterra-Fredholm integro-differential equations. Appliedmath, 2022; under review. [Google Scholar]
- Providas, E. Closed-form solution of the bending two-phase integral model of Euler-Bernoulli nanobeams. Algorithms 2022, 15, 151. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Providas, E. An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type. Algorithms 2022, 15, 203. https://doi.org/10.3390/a15060203
Providas E. An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type. Algorithms. 2022; 15(6):203. https://doi.org/10.3390/a15060203
Chicago/Turabian StyleProvidas, Efthimios. 2022. "An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type" Algorithms 15, no. 6: 203. https://doi.org/10.3390/a15060203
APA StyleProvidas, E. (2022). An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type. Algorithms, 15(6), 203. https://doi.org/10.3390/a15060203