Research on an Optimal Path Planning Method Based on A* Algorithm for Multi-View Recognition
Abstract
:1. Introduction
- (1)
- A multi-view feature extraction model based on the BM2DKPCANet is constructed and a multi-view classifier combing with Softmax is built. The output category posterior probability is used to characterize the viewpoint performance.
- (2)
- The recognition performance and interval distance are abstracted as directed graph models and the multi-objective optimization problem is transformed into a single optimization problem by fusing two adjacency matrices. The single-source shortest path problem of the fused directed graph based on the A* algorithm is solved to complete the optimal observation path planning, satisfying the shortest distance requirement.
- (3)
- Observation path planning experiments are implemented based on the UR5 robot manipulator with different observation viewpoints and different path starting points. The results demonstrated the effectiveness of the A* algorithm for perspective-seeking path planning. The effect of viewpoint number on recognition results is analyzed and discussed.
2. Related Works
2.1. Multi-View Target Recognition
2.2. Feature Extraction Based on BM2DKPCANet Model
3. Optimal Path Planning for Multi-View Recognition Based on the A* Algorithm
3.1. Geometric Model for Target Observation
3.2. Objective Functions and Constraints
3.3. Optimal Path Planning Based on A* Algorithm for Multi-View Recognition
4. Experimental Verification and Analysis
4.1. Construction of Experimental Platform
4.2. Camera Calibration and Motion Control
4.2.1. Camera Calibration
4.2.2. Control of Manipulator
4.3. Optimization Path Planning for Multi-View Recognition
4.3.1. Path Planning with Different Perspectives
4.3.2. Path Planning with Different Starting Points
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vieira, T.; Bordignon, A.; Peixoto, A. Learning good views through intelligent galleries. Comput. Graph. Forum 2009, 28, 717–726. [Google Scholar] [CrossRef]
- Vázquez, P.P. Depth-based Automatic view selection through view stability analysis. Vis. Comput. 2009, 25, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Leifman, G.; Shtrom, E.; Tal, A. Surface regions of interest for viewpoint selection. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2544–2556. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yang, L.; Wang, D. Finding canonical views by measuring features on the viewing plane. In Proceedings of the Asia-Pacific Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), Hollywood, CA, USA, 3–6 December 2012; pp. 1–7. [Google Scholar]
- Feixas, M.; Sbert, M.; Gonzalez, F. A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. 2009, 6, 1–23. [Google Scholar] [CrossRef]
- Sbert, M.; Plemenos, D.; Feixas, M.; Gonzalez, F. Viewpoint quality: Measures and applications. In Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging, Girona, Spain, 18–20 May 2005; pp. 185–192. [Google Scholar]
- Serin, E.; Sumengen, S.; Balcisoy, S. Representational image generation for 3D objects. Vis. Comput. 2013, 29, 675–684. [Google Scholar] [CrossRef]
- Gao, T.H.; Wang, W.C.; Han, H.L. Efficient view selection by measuring proxy information. Comput. Animat. Virtual Worlds 2016, 27, 351–357. [Google Scholar] [CrossRef]
- Shilane, P.; Funkhouser, T. Distinctive regions of 3D surfaces. ACM Trans. Graph. 2007, 26, 7. [Google Scholar] [CrossRef]
- Fu, H.B.; Cohen-Or, D.; Dror, G. Upright orientation of man-made objects. ACM Trans. Graph. 2008, 27, 42. [Google Scholar] [CrossRef] [Green Version]
- Mortara, M.; Spagnuolo, M. Semantics-driven best view of 3D shapes. Comput. Graph. 2009, 33, 280–290. [Google Scholar] [CrossRef]
- Chen, X.B.; Saparov, A.; Pang, B. Schelling points on 3D surface meshes. ACM Trans. Graph. 2012, 31, 29. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, B.M.; Lee, G.H. So-net: Self-organizing network for point cloud analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9397–9406. [Google Scholar]
- Liu, A.A.; Zhou, H.; Nie, W.; Liu, Z.; Liu, W.; Xie, H.; Mao, Z.; Li, X.; Song, D. Hierarchical multi-view context modelling for 3d object classification and retrieval. Inf. Sci. 2021, 547, 984–995. [Google Scholar] [CrossRef]
- Wei, X.; Yu, R.; Sun, J. View-GCN: View-based Graph Convolutional Network for 3D Shape Analysis. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1847–1856. [Google Scholar]
- Zhou, H.Y.; Liu, A.A.; Nie, W.Z.; Nie, J. Multi-View Saliency Guided Deep Neural Network for 3D Object Retrieval and Classification. IEEE Trans. Multimed. 2020, 22, 1496–1506. [Google Scholar] [CrossRef]
- Meng, F.; Xu, Y.; Huang, Z.; Wang, L. Optimal view selection method based on object detection. J. Phys. Conf. Ser. 2020, 1650, 032141. [Google Scholar] [CrossRef]
- Kanezaki, A.; Matsushita, Y.; Nishida, Y. Rotationnet: Joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5010–5019. [Google Scholar]
- Kanezaki, A.; Matsushita, Y.; Nishida, Y. Rotationnet for joint object categorization and unsupervised pose estimation from multi-view images. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zheng, L.; Zhang, Y.; Sun, Z.; Xu, K. VERAM: View-Enhanced Recurrent Attention Model for 3D Shape Classification. IEEE Trans. Vis. Comput. Graph. 2019, 25, 3244–3257. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, D.; Plemenos, D.; Tamine, K. Methods and data structures for virtual world exploration. Vis. Comput. 2006, 22, 506–516. [Google Scholar] [CrossRef]
- Alam, M.S.; Goodwin, S.D. Control of Constraint Weights for a 2D Autonomous Camera. In Canadian AI 2009: Advances in Artificial Intelligence, Proceedings of the Canadian Conference on Artificial Intelligence, Kelowna, BC, Canada, 25–27 May 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 121–132. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, C.H.; Koschan, A.; Abidi, M. Adaptive online camera coordination for multi-camera multi-target surveillance. Comput. Vis. Image Underst. 2010, 114, 463–474. [Google Scholar] [CrossRef]
- Amriki, K.A.; Atrey, P.K. Bus surveillance: How many and where cameras should be placed. Multimed. Tools Appl. 2014, 71, 1051–1085. [Google Scholar] [CrossRef]
- Guzman-Rivera, A.; Kohli, P.; Glocker, B.; Shotton, J.; Sharp, T.; Fitzgibbon, A.; Izadi, S. Multi-output learning for camera relocalization. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1114–1121. [Google Scholar] [CrossRef]
- Valentin, J.; Nießner, M.; Shotton, J.; Fitzgibbon, A.; Izadi, S.; Torr, P. Exploiting uncertainty in regression forests for accurate camera relocalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4400–4408. [Google Scholar] [CrossRef]
- Lan, K.; Sekiyama, K. Optimal Viewpoint Selection Based on Aesthetic Composition Evaluation Using Kullback-Leibler Divergence. In Proceedings of the International Conference on Intelligent Robotics and Applications ICIRA 2016: Intelligent Robotics and Applications, Tokyo, Japan, 22–24 August 2016; pp. 433–443. [Google Scholar]
- Qiu, Y.; Satoh, Y.; Suzuki, R.; Iwata, K.; Kataoka, H. Multi-View Visual Question Answering with Active Viewpoint Selection. Sensors 2020, 20, 2281. [Google Scholar] [CrossRef] [Green Version]
- Yokomatsu, T.; Sekiyama, K. Optimal viewpoint selection for indoor drones using PSO and Gaussian Processes. In Proceedings of the 2021 60th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Tokyo, Japan, 8–10 September 2021; pp. 634–639. [Google Scholar]
- Zou, Y.; Li, L.; Gao, Z. Obstacle avoidance path planning for harvesting robot arm based on improved PRM. Transducer Microsyst. Technol. 2019, 38, 52–56. [Google Scholar]
- Yuan, C.; Liu, G.; Zhang, W. An efficient RRT cache method in dynamic environments for path planning. Robot. Auton. Syst. 2020, 131, 103595. [Google Scholar] [CrossRef]
- Dai, W.; Li, C.; Yang, C.; Ma, X. Manipulator path planning using fusion algorithm of low difference sequence and rapidly exploring random tree. Control Theory Appl. 2022, 39, 130–144. [Google Scholar]
- Zhao, M.; Lv, X. Improved Manipulator Obstacle Avoidance Path Planning Based on Potential Field Method. J. Robot. 2020, 2020, 1701943. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, H.; Tan, S.; Li, Z.; Ju, X.; Peng, Y. Mechanical arm obstacle avoidance path planning based on improved artificial potential field method. Ind. Robot 2022, 49, 271–279. [Google Scholar] [CrossRef]
- Fink, W.; Baker, V.R.; Brooks, A.J.-W.; Flammia, M.; Dohm, J.M.; Tarbell, M.A. Globally optimal rover traverse planning in 3D using Dijkstra’s algorithm for multi-objective deployment scenarios. Planet. Space Sci. 2019, 179, 104707. [Google Scholar] [CrossRef]
- Jia, Q.; Chen, G.; Sun, H.; Zheng, S. Path Planning for Space Manipulator to Avoid Obstacle Based on A* Algorithm. J. Mech. Eng. 2010, 46, 109–115. [Google Scholar] [CrossRef]
- Qureshi, A.H.; Simeonov, A.; Bency, M.J.; Yip, M.C. Motion planning networks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2118–2124. [Google Scholar]
- Li, Y.; Liu, K. Two-degree-of-freedom manipulator path planning based on zeroing neural network. In Proceedings of the 2019 International Conference on Computer Science Communication and Network Security (CSCNS), Sanya, China, 22–23 December 2019; Volume 309. [Google Scholar]
- Zhang, J.; Cheng, L.; Wang, T.; Xia, W.; Yan, D.; Wu, Z.; Duan, X. A welding manipulator path planning method combining reinforcement learning and intelligent optimisation algorithm. Int. J. Model. Identif. Control 2019, 33, 261–270. [Google Scholar] [CrossRef]
- Hua, X.; Wang, G.; Xu, J. Reinforcement learning-based collision-free path planner for redundant robot in narrow duct. J. Intell. Manuf. 2020, 32, 471–482. [Google Scholar] [CrossRef]
- Zou, Q.; Liu, S.; Zhang, Y.; Hou, Y. Rapidly-exploring random tree algorithm for path re-planning based on reinforcement learning under the peculiar environment. Control Theory Appl. 2020, 37, 1737–1748. [Google Scholar]
- Wang, J.; Hirota, K.; Wu, X.; Dai, Y.; Jia, Z. Hybrid bidirectional rapidly exploring random tree path planning algorithm with reinforcement learning. J. Adv. Comput. Intell. Intell. Inform. 2021, 25, 121–129. [Google Scholar] [CrossRef]
- Santos, R.R.; Rade, D.A.; da Fonseca, I.M. A machine learning strategy for optimal path planning of space robotic manipulator in on-orbit servicing. Acta Astronaut. 2022, 191, 41–54. [Google Scholar] [CrossRef]
- Fang, Z.; Liang, X. Intelligent obstacle avoidance path planning method for picking manipulator combined with artificial potential field method. Ind. Robot 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar]
- Gao, Z.; Wang, D.Y.; Xue, Y.B.; Xu, G.P.; Zhang, H.; Wang, Y.L. 3D object recognition based on pairwise Multi-view Convolutional Neural Networks. J. Vis. Commun. Image R. 2018, 56, 305–315. [Google Scholar] [CrossRef]
- Gao, Z.; Xue, H.; Wan, S. Multiple Discrimination and Pairwise CNN for view-based 3D object retrieval. Neural Netw. 2020, 125, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Kumar, A. Contactless and partial 3D fingerprint recognition using multi-view deep representation. Pattern Recognit. 2018, 83, 314–327. [Google Scholar] [CrossRef]
- Han, Z.; Shang, M.; Liu, Z.; Vong, C.; Liu, Y.; Zwicker, M.; Han, J.; Chen, C.L.P. SeqViews2SeqLabels: Learning 3D global features via aggregating sequential views by RNN with attention. IEEE Trans. Image Process. 2019, 28, 658–672. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Wu, Q.; Kang, W. PVLNet: Parameterized-View-Learning neural network for 3D shape recognition. Comput. Graph. 2021, 98, 71–81. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Guo, X.S.; Ren, H.H. Multi-view classification with semi-supervised learning for SAR target recognition. Signal Processing 2021, 183, 108030. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, D.; Zhao, Y.; Nie, W.; Su, Y. MV-LFN: Multi-view based local information fusion network for 3D shape recognition. Vis. Inform. 2021, 5, 114–119. [Google Scholar] [CrossRef]
- Fei, L.K.; Zhang, B.; Wen, J. Jointly learning compact multi-view hash codes for few-shot FKP recognition. Pattern Recognit. 2021, 115, 107894. [Google Scholar] [CrossRef]
- Liang, Q.; Li, Q.; Zhang, L.; Mi, H.; Nie, W.; Li, X. MHFP: Multi-view based hierarchical fusion pooling method for 3D shape recognition. Pattern Recognit. Lett. 2021, 150, 214–220. [Google Scholar] [CrossRef]
- Li, X.N.; Wu, H.; Yang, X.H. Multi-view Recognition of Fruit Packing Boxes Based on Features Clustering Angle. High Technol. Lett. 2021, 27, 200–209. [Google Scholar]
- Li, X.N.; Wu, H.; Yang, X.H.; Xue, P.; Tan, S. Multi-view Machine Vision Research of Fruits Boxes Handling Robot Based on the Improved 2D Kernel Principal Component Analysis Network. J. Robot. 2021, 2021, 3594422. [Google Scholar]
- Chan, T.H.; Jia, K.; Gao, S. PCANet: A simple deep learning baseline for image classification. IEEE Trans. Image Process. 2015, 24, 5017–5032. [Google Scholar] [CrossRef] [Green Version]
Longitude | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
Latitude | ||||||||||
1 | 95.82 | 96.35 | 96.47 | 96.38 | 96.27 | 95.28 | 89.21 | 85.07 | 84.24 | |
2 | 96.04 | 96.28 | 96.34 | 96.56 | 96.48 | 96.03 | 90.24 | 86.07 | 84.56 | |
3 | 96.59 | 96.64 | 96.69 | 96.78 | 96.71 | 95.86 | 91.2 | 84.32 | 83.74 | |
4 | 96.21 | 96.33 | 96.48 | 96.52 | 96.54 | 95.29 | 93.21 | 85.14 | 83.22 | |
5 | 90.28 | 91.97 | 91.98 | 91.55 | 91.49 | 89.23 | 87.42 | 83.21 | 82.89 | |
6 | 90.37 | 90.58 | 91.24 | 91.28 | 90.97 | 89.86 | 88.47 | 82.89 | 82.67 | |
7 | 91.58 | 92.48 | 92.77 | 92.64 | 92.85 | 91.87 | 87.65 | 83.11 | 82.9 | |
8 | 94.05 | 94.62 | 94.77 | 96.58 | 95.69 | 93.21 | 88.56 | 83.09 | 82.97 | |
9 | 94.21 | 94.53 | 94.71 | 96.57 | 96.09 | 94.54 | 88.96 | 85.27 | 83.04 | |
10 | 94.19 | 94.62 | 94.85 | 95.98 | 96.11 | 94.49 | 88.89 | 85.07 | 82.72 | |
11 | 94.25 | 95.65 | 95.69 | 96.23 | 96.54 | 95.68 | 88.74 | 84.75 | 83.01 | |
12 | 95.23 | 95.67 | 95.98 | 96.37 | 96.84 | 96.71 | 90.23 | 85.02 | 82.91 | |
13 | 94.62 | 94.95 | 95.01 | 95.06 | 95.79 | 95.68 | 89.64 | 84.65 | 82.54 | |
14 | 95.36 | 95.47 | 95.78 | 96.24 | 96.59 | 95.25 | 89.07 | 84.32 | 82.46 | |
15 | 95.24 | 95.37 | 95.69 | 96.14 | 96.23 | 95.02 | 88.65 | 83.72 | 82.64 | |
16 | 95.14 | 95.28 | 95.47 | 95.95 | 95.86 | 94.84 | 88.22 | 83.59 | 82.75 | |
17 | 95.08 | 95.23 | 95.36 | 95.64 | 95.18 | 94.62 | 88.07 | 83.25 | 82.61 | |
18 | 95.11 | 95.19 | 95.28 | 95.64 | 95.68 | 94.96 | 88.69 | 83.61 | 82.56 | |
19 | 95.01 | 95.21 | 95.49 | 95.77 | 95.94 | 94.87 | 88.54 | 83.54 | 82.45 | |
20 | 95.3 | 95.48 | 95.57 | 96.04 | 96.25 | 94.66 | 87.99 | 83.09 | 82.64 | |
21 | 95.34 | 95.66 | 96.08 | 96.24 | 96.37 | 94.72 | 87.78 | 82.98 | 82.49 | |
22 | 94.49 | 95.18 | 95.62 | 96.03 | 96.54 | 94.93 | 88.06 | 83.24 | 82.56 | |
23 | 90.25 | 90.54 | 90.68 | 90.75 | 90.59 | 88.96 | 88.32 | 83.64 | 82.57 | |
24 | 90.46 | 90.85 | 90.96 | 90.89 | 90.32 | 89.05 | 87.84 | 83.77 | 82.59 | |
25 | 90.04 | 90.22 | 90.12 | 90.35 | 91.26 | 90.67 | 87.76 | 83.89 | 82.67 | |
26 | 94.21 | 94.67 | 95.11 | 95.24 | 95.87 | 94.98 | 88.22 | 84.05 | 82.79 | |
27 | 94.33 | 94.52 | 94.69 | 95.61 | 96.04 | 95.06 | 88.05 | 83.95 | 82.98 | |
28 | 95.38 | 95.67 | 96.14 | 96.22 | 96.35 | 95.08 | 88 | 83.26 | 83.02 | |
29 | 95.46 | 95.62 | 95.69 | 96.34 | 96.58 | 94.65 | 87.96 | 82.96 | 82.85 | |
30 | 95.63 | 95.89 | 96.01 | 96.26 | 96.57 | 94.88 | 87.94 | 82.69 | 82.79 | |
31 | 94.32 | 94.65 | 95.23 | 95.92 | 96.29 | 94.97 | 88.06 | 82.94 | 82.68 | |
32 | 95.02 | 95.39 | 95.77 | 96.05 | 96.38 | 94.99 | 88.29 | 83.25 | 82.65 | |
33 | 95.06 | 95.28 | 95.41 | 96.35 | 96.26 | 95.06 | 88.65 | 83.56 | 82.62 | |
34 | 95.14 | 95.39 | 95.65 | 96.25 | 96.09 | 95.08 | 88.97 | 84.12 | 82.67 | |
35 | 94.01 | 94.85 | 95.26 | 95.61 | 95.78 | 95 | 88.65 | 83.97 | 82.84 | |
36 | 94.03 | 94.67 | 95.24 | 95.54 | 95.66 | 95.02 | 88.53 | 83.65 | 82.91 | |
Average | 94.23 | 94.63 | 94.87 | 95.27 | 95.36 | 94.20 | 88.69 | 83.77 | 82.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; He, Q.; Yang, Q.; Wang, N.; Wu, H.; Yang, X. Research on an Optimal Path Planning Method Based on A* Algorithm for Multi-View Recognition. Algorithms 2022, 15, 171. https://doi.org/10.3390/a15050171
Li X, He Q, Yang Q, Wang N, Wu H, Yang X. Research on an Optimal Path Planning Method Based on A* Algorithm for Multi-View Recognition. Algorithms. 2022; 15(5):171. https://doi.org/10.3390/a15050171
Chicago/Turabian StyleLi, Xinning, Qun He, Qin Yang, Neng Wang, Hu Wu, and Xianhai Yang. 2022. "Research on an Optimal Path Planning Method Based on A* Algorithm for Multi-View Recognition" Algorithms 15, no. 5: 171. https://doi.org/10.3390/a15050171
APA StyleLi, X., He, Q., Yang, Q., Wang, N., Wu, H., & Yang, X. (2022). Research on an Optimal Path Planning Method Based on A* Algorithm for Multi-View Recognition. Algorithms, 15(5), 171. https://doi.org/10.3390/a15050171