Ensemble Machine Learning Model to Predict the Waterborne Syndrome
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
- Pre-processing the data to validate correctness through detection of extreme cases, data discretization, removing text anomalies, and data synchronization.
- Defining the feature attributes and sets of data instances into target classes.
- Selecting the most effective classifier through comparing frequently employed classification algorithms on waterboard study from the review of the literature.
- Introducing an ensemble model and analyzing accuracies of classified instances through stratified cross-validations, confusion matrix, and accuracy statistics.
- Extracting knowledge clusters on patients’ characteristics, disease prevalence, and hygiene conditions critical in stopping the ongoing pandemic.
3.1. Study Data
3.2. Data Variables
3.3. Data Preparation
3.4. Feature Extraction
3.5. Experimental Setup
3.6. Performance of Models
4. Data Extraction
4.1. Patients Epidemiology
4.2. Water Source and Quality
4.3. Toiletries Management
4.4. Drugs Control
4.5. Patients Side-Effects
5. Discussions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Diarrheal Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed on 7 August 2021).
- Bain, R.; Johnston, R.; Khan, S.; Hancioglu, A.; Slaymaker, T. Monitoring drinking water quality in nationally representative household surveys in low-and middle-income countries: Cross-sectional analysis of 27 multiple indicator cluster surveys 2014–2020. Environ. Health Perspect. 2021, 129, 097010. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 15 October 2021).
- Tumwine, J.K. Clean drinking water for homes in Africa and other less developed countries. Br. Med. J. 2005, 331, 468–469. [Google Scholar] [CrossRef] [PubMed]
- Murray, D.R.; Schaller, M. Historical prevalence of infectious diseases within 230 geopolitical regions: A tool for investigating origins of culture. J. Cross-Cult. Psychol. 2010, 41, 99–108. [Google Scholar] [CrossRef]
- Nobel, Y.R.; Phipps, M.; Zucker, J.; Lebwohl, B.; Wang, T.C.; Sobieszczyk, M.E.; Freedberg, D.E. Gastrointestinal symptoms and coronavirus disease 2019: A case-control study from the United States. Gastroenterology 2020, 159, 373–375. [Google Scholar] [CrossRef]
- Shang, H.; Bai, T.; Chen, Y.; Huang, C.; Zhang, S.; Yang, P.; Zhang, L. Outcomes and implications of diarrhea in patients with SARS-CoV-2 infection. Scand. J. Gastroenterol. 2020, 55, 1049–1056. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.P.; Yu, J.X.; Chen, X.; Wang, R.N.; Yang, X.Z.; Zheng, S.F.; Yu, F.; Zhang, Z.K.; Liu, S.J.; et al. Prevalence of enteropathogenesis in outpatients with acute diarrhea from urban and rural areas, southeast China, 2010–2014. Am. J. Trop. Med. Hyg. 2019, 101, 310–318. [Google Scholar] [CrossRef]
- Fewtrell, L.; Kaufmann, R.B.; Kay, D.; Enanoria, W.; Haller, L.; Colford, J.M., Jr. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: A systematic review and meta-analysis. Lancet Infect. Dis. 2005, 5, 42–52. [Google Scholar] [CrossRef]
- Burnett, E.; Parashar, U.D.; Tate, J.E. Global impact of rotavirus vaccination on diarrhea hospitalizations and deaths among children <5 years old: 2006–2019. J. Infect. Dis. 2020, 222, 1731–1739. [Google Scholar] [CrossRef]
- Wahyudi, M.; Andriani, A. Application of C4.5 and Naïve Bayes Algorithm for Detection of Potential Increased Case Fatality Rate Diarrhea. J. Phys. Conf. Ser. 2021, 1830, 12016. [Google Scholar] [CrossRef]
- Wang, M.; Wei, Z.; Jia, M.; Chen, L.; Ji, H. Deep learning model for multi-classification of infectious diseases from unstructured electronic medical records. BMC Med. Inform. Decis. Mak. 2022, 22, 41. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Olatunji, S.O. Computational intelligence-based model for diarrhea prediction using Demographic and Health Survey data. Soft Comput. 2020, 24, 5357–5366. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Gu, J.; Zhou, Z.; Wang, Z. Artificial neural networks for infectious diarrhea prediction using meteorological factors in Shanghai (China). Appl. Soft Comput. 2015, 35, 280–290. [Google Scholar] [CrossRef]
- Kurisu, K.; Yoshiuchi, K.; Ogino, K.; Oda, T. Machine learning analysis to identify the association between risk factors and onset of nosocomial diarrhea: A retrospective cohort study. PeerJ 2019, 7, e7969. [Google Scholar] [CrossRef]
- Luby, S.P.; Halder, A.K.; Huda, T.; Unicomb, L.; Johnston, R.B. The effect of handwashing at recommended times with water alone and with soap on child diarrhea in rural Bangladesh: An observational study. PLoS Med. 2011, 8, e1001052. [Google Scholar] [CrossRef]
- Kitson, N.K.; Constantinou, A.C. Learning Bayesian networks from demographic and health survey data. J. Biomed. Inform. 2021, 113, 103588. [Google Scholar] [CrossRef]
- Ahmed, S.A.K.S.; Ajisola, M.; Azeem, K.; Bakibinga, P.; Chen, Y.; Choudhury, N.N.; Fayehun, O.; Griffiths, F.; Harris, B.; Kibe, P.; et al. Improving Health in Slums Collaborative. Impact of the societal response to COVID-19 on access to healthcare for non-COVID-19 health issues in slum communities of bangladesh, kenya, nigeria and pakistan: Results of pre-COVID and COVID-19 lockdown stakeholder engagements. BMJ Glob. Health 2020, 5, e003042. [Google Scholar]
- Gollapalli, M.; Li, X.; Wood, I.; Governatori, G. Ontology guided data linkage framework for discovering meaningful data facts. In Proceedings of the International Conference on Advanced Data Mining and Applications (ADMA), Beijing, China, 17–19 December 2011; pp. 252–265. [Google Scholar]
- Rahman, A.; Sultan, K.; Naseer, I.; Majeed, R.; Musleh, D.; Gollapalli, M.A.S.; Chabani, S.; Ibrahim, N.; Siddiqui, S.Y.; Khan, M.A. Supervised Machine Learning-based Prediction of COVID-19. Comput. Mater. Contin. 2021, 69, 21–34. [Google Scholar] [CrossRef]
- Rahman, A. GRBF-NN based ambient aware realtime adaptive communication in DVB-S2. J. Ambient Intell. Hum. Comput. 2020, 1–11. [Google Scholar] [CrossRef]
- Rahman, A.; Qureshi, I.M.; Malik, A.N.; Naseem, M.T. A real time adaptive resource allocation scheme for OFDM systems using GRBF-neural networks and fuzzy rule base system. Int. Arab J. Inf. Technol. 2014, 11, 593–601. [Google Scholar]
- Liang, S.; Gu, Y. Computer-Aided Diagnosis of Alzheimer’s Disease through Weak Supervision Deep Learning Framework with Attention Mechanism. Sensors 2021, 21, 220. [Google Scholar] [CrossRef]
- Prashanth, B.; Neelima, G.; Dule, C.S.; Chandra Prakash, T.; Tarun Reddy, S. Data science and machine learning integrated implementation patterns for cavernous knowledge discovery from COVID-19 data. IOP Conference Series. Mater. Sci. Eng. 2020, 981, 2. [Google Scholar]
- Xia, Y.; Chen, K.; Yang, Y. Multi-label classification with weighted classifier selection and stacked ensemble. Inf. Sci. 2021, 557, 421–442. [Google Scholar] [CrossRef]
- Li, X.; Ling, S.H.; Su, S. A Hybrid Feature Selection and Extraction Methods for Sleep Apnea Detection Using Bio-Signals. Sensors 2020, 20, 4323. [Google Scholar] [CrossRef] [PubMed]
- Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef]
- Awadh, W.A.; Alasady, A.S.; Mustafa, H.I. Predictions of COVID-19 spread by using supervised data mining techniques. J. Phys. Conf. Ser. 2021, 1879, 22081. [Google Scholar] [CrossRef]
- Selvakumar, K.; Lokesh, S. The prediction of the lifetime of the new coronavirus in the USA using mathematical models. Soft Comput. 2021, 25, 10575–10594. [Google Scholar] [CrossRef]
- Carslake, C.; Vázquez-Diosdado, J.A.; Kaler, J. Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock. Sensors 2021, 21, 88. [Google Scholar] [CrossRef]
- Fonyuy, B.E. Prevalence of water borne diseases within households in the Bamendankwe municipality-north west Cameroon. J. Biosaf. Health Educ. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- QS Medeiros, P.H.; Ledwaba, S.E.; Bolick, D.T.; Giallourou, N.; Yum, L.K.; Costa, D.V.; Oriá, R.B.; Barry, E.M.; Swann, J.R.; Lima, A.Â.M.; et al. A murine model of diarrhea, growth impairment and metabolic disturbances with Shigella flexneri infection and the role of zinc deficiency. Gut Microbes 2019, 10, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, N. Water Storage in Rural Households: Intervention Strategies Prevent Waterborne Diseases. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2008. [Google Scholar]
- Ahmed, M.I.B.; Rahman, A.; Farooqui, M.; Alamoudi, F.; Baageel, R.; Alqarni, A. Early identification of COVID-19 using dynamic fuzzy rule based system. Math. Model. Eng. Probl. 2021, 8, 805–812. [Google Scholar] [CrossRef]
- Curtis, V.; Cairncross, S. Effect of washing hands with soap on diarrhoea risk in the community: A systematic review. Lancet Infect. Dis. 2003, 3, 275–281. [Google Scholar] [CrossRef]
- Hoque, B.A. Handwashing practices and challenges in Bangladesh. Int. J. Environ. Health Res. 2003, 13, S81–S87. [Google Scholar] [CrossRef] [PubMed]
- Sobsey, M.D.; Water, S.; World Health Organization (WHO). Managing Water in the Home: Accelerated Health Gains from Improved Water Supply; No. WHO/SDE/WSH/02.07; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Rehman, A.; Athar, A.; Khan, M.A.; Abbas, S.; Rahman, A.; Saeed, A. Modelling, simulation, and optimization of diabetes type II prediction using deep extreme learning machine. J. Ambient Intell. Smart Environ. 2020, 12, 125–138. [Google Scholar] [CrossRef]
- Qureshi, E.M.A.; Khan, A.U.; Vehra, S. An investigation into the prevalence of water borne diseases in relation to microbial estimation of potable water in the community residing near River Ravi, Lahore, Pakistan. Afr. J. Environ. Sci. Technol. 2011, 5, 595–607. [Google Scholar]
- Rosa, G.; Miller, L.; Clasen, T. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala. Am. J. Trop. Med. Hyg. 2010, 82, 473. [Google Scholar] [CrossRef] [Green Version]
Symbol | Variable | Data Description |
---|---|---|
GEN | Gender | Male/female indicator of patient |
AGE | Age | Age of the patient when diagnosed |
PRE | Prescriber | Type of prescriber if herbal, MBBS doctor, Quack or Self |
DIS | Disease | Type of disease if diarrhea or typhoid |
HOS | Hospital | Name of the hospital or health center (location) |
Symbol | Variable | Data Description (Yes/No Indicators) |
---|---|---|
ORS | ORS | Prescription for oral rehydration solution |
AZI | Azithromycin | Prescription for azithromycin medication |
MET | Metronidazole | Prescription for metronidazole medication |
CIP | Ciprofloxacin | Prescription for ciprofloxacin medication |
CEF | Ceftriaxone | Prescription for ceftriaxone medication |
OND | Ondansetron | Prescription for ondansetron medication |
DOM | Domperidone | Prescription for domperidone medication |
TMS | Tiemonium Methylsulphate | Prescription for tiemonium methylsulphate medication |
LOP | Loperamide | Prescription for loperamide medication |
PAR | Paracetamol | Prescription for paracetamol medication |
OME | Omeprazole | Prescription for omeprazole medication |
PAN | Pantoprazole | Prescription for pantoprazole medication |
RAN | Ranitidine | Prescription for ranitidine medication |
VIT | Vitamins | Prescription for vitamin medication |
MIN | Minerals | Prescription for minerals medication |
Symbol | Variable | Data Description |
---|---|---|
1SE, 2SE, 3SE | 1st, 2nd, and 3rd Symptoms | Combination of 12 symptoms indicating if the patient had any of these as 1st, 2nd, or 3rd symptom(s) after taking prescribed medication. The options included abdominal pain, acute watery diarrhea, constipation, dry mouth, fatigue, fever, headache, irritation, nausea, vomiting, weakness, and no symptoms. |
Symbol | Variable | Data Description (Yes/No Indicators) |
---|---|---|
PRD | Prevalence of Disease | The patient had the disease for 1st/2nd/3rd or more than 3 times at the time of diagnosis. |
FMS | Family Members Suffering | If 1, 2, all or none of the patient’s family members are suffering at the time of the patient’s diagnosis. |
DrinkQ | Drinking Water Quality | Safe, unsafe, or moderate quality level. |
DrinkS | Drinking Water Source | Filtered water, tap water, or tube well. |
CookQ | Cooking Water Quality | Safe, unsafe, or moderate quality. |
CookS | Cooking Water Source | Filtered water, tap water or tube well. |
BathQ | Bathing Water Quality | Safe, unsafe, or moderate quality. |
BathS | Bathing Water Source | Filtered water, tap water or tube well. |
WashQ | Washing Water Quality | Safe, unsafe, or moderate quality level. |
WashS | Washing Water Source | Filtered water, tap water or tube well. |
ATS | After Toileting Use | Use ash, soap, safe water, or normal water. |
PWT | Purifying Water Technique | Uses any techniques for purifying water. |
PWC | Purifying Water Chemicals | Uses any chemicals for purifying water. |
Classifier | Correctly Classified | Kappa Statistic | Time (Seconds) |
---|---|---|---|
Ensemble | 98.90% | 0.9563 | 00.01 |
Naïve Bayes | 97.96% | 0.9354 | 00.01 |
SVM | 97.96% | 0.9351 | 00.13 |
J48 (Decision tree) | 98.59% | 0.9551 | 00.01 |
NN (Multilayer Perceptron) | 97.49% | 0.9198 | 11.00 |
PART (Rule Based) | 98.59% | 0.9551 | 00.10 |
Random Forest | 98.28% | 0.9696 | 00.09 |
Logistic Regression | 97.81% | 0.9612 | 00.26 |
Classifier | Parameter | Value |
---|---|---|
Ensemble | Base classifier | NB and J48 |
Meta classifier | NB | |
NumFolds | 10 | |
Seed | 1 |
Source ↓ | Ages | Drinking Water | Cooking Water | Bathing Water | Household Water | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quality → | Aggregate | Mod | Safe | Unsafe | Mod | Safe | Unsafe | Mod | Safe | Unsafe | Mod | Safe | Unsafe |
Filter Water | Count | - | 13.0 | - | - | - | - | - | - | - | - | - | - |
% | - | 2.28 | - | - | - | - | - | - | - | - | - | - | |
Mean | - | 33.4 | - | - | - | - | - | - | - | - | - | - | |
Min | - | 13.0 | - | - | - | - | - | - | - | - | - | - | |
Max | - | 58.0 | - | - | - | - | - | - | - | - | - | - | |
Var | - | 180.5 | - | - | - | - | - | - | - | - | - | - | |
Pond Water | Count | - | - | - | - | - | - | 5.0 | 0.0 | 125.0 | 4.0 | 1.0 | 134.0 |
% | - | - | - | - | - | - | 0.87 | 21.9 | 0.70 | 0.17 | 23.5 | ||
Mean | - | - | - | - | - | - | 31.4 | - | 35.1 | 39.0 | 38.0 | 34.8 | |
Min | - | - | - | - | - | - | 9.0 | - | 1.0 | 27.0 | 38.0 | 1.0 | |
Max | - | - | - | - | - | - | 58.0 | - | 70.0 | 65.0 | 38.0 | 70.0 | |
Var | - | - | - | - | - | - | 244.6 | - | 216.2 | 229.5 | 0.0 | 195.3 | |
River Water | Count | - | - | - | 1.0 | 1.0 | 26.0 | 1.0 | 0.0 | 53.0 | 1.0 | 0.0 | 51.0 |
% | - | - | - | 0.17 | 0.17 | 4.56 | 0.17 | - | 9.31 | 0.17 | - | 8.9 | |
Mean | - | - | - | 38.0 | 37.0 | 41.3 | 38.0 | - | 38.8 | 38.0 | - | 38.5 | |
Min | - | - | - | 38.0 | 37.0 | 3.0 | 38.0 | - | 3.0 | 38.0 | - | 3.0 | |
Max | - | - | - | 38.0 | 37.0 | 68.0 | 38.0 | - | 68.0 | 38.0 | - | 68.0 | |
Var | - | - | - | 0.0 | 0.0 | 271.4 | 0.0 | - | 256.0 | 0.0 | - | 263.3 | |
Tap Water | Count | 106.0 | 3.0 | - | 315.0 | 1.0 | 0.0 | 325.0 | 0.0 | 1.0 | 323.0 | 0.0 | 1.0 |
% | 18.6 | 0.5 | - | 55.3 | 0.17 | - | 57.11 | - | 0.17 | 56.7 | - | 0.17 | |
Mean | 34.1 | 45.0 | - | 34.3 | 27.0 | - | 34.7 | - | 39.0 | 34.6 | - | 58.0 | |
Min | 9.0 | 23.0 | - | 1.0 | 27.0 | - | 2.0 | - | 39.0 | 1.0 | - | 58.0 | |
Max | 70.0 | 61.0 | - | 70.0 | 27.0 | - | 70.0 | - | 39.0 | 70.0 | - | 58.0 | |
Var | 200.9 | 258.6 | - | 192.6 | 0.0 | - | 192.6 | - | 0 | 196.6 | - | 0.0 | |
Tube Water | Count | 3.0 | 444.0 | - | 4.0 | 221.0 | 0.0 | 2.0 | 57.0 | - | - | 54.0 | 0.0 |
% | 0.5 | 78.0 | - | 0.7 | 38.8 | - | 0.3 | 10.0 | - | - | 9.4 | - | |
Mean | 11.3 | 35.5 | - | 40.2 | 35.3 | - | 18.0 | 34.8 | - | - | 35.0 | - | |
Min | 1.0 | 1.0 | - | 2.0 | 1.0 | - | 1.0 | 1.0 | - | - | 1.0 | - | |
Max | 31.0 | 70.0 | - | 65.0 | 70.0 | - | 35.0 | 68.0 | - | - | 68.0 | - | |
Var | 193.5 | 209.5 | - | 542.1 | 221.5 | - | 289.0 | 241.7 | - | - | 276.5 | - |
Aggregates | Solids | Liquids | |||
---|---|---|---|---|---|
Source → Family ↓ | Ages | Ash | Soap | Safe Water | Normal Water |
1 Member | % | 16 (2.8%) | 45.0 (7.9%) | 4 (0.7%) | 10.0 (1.75%) |
Mean | 45.8 | 40.2 | 34.5 | 43.0 | |
Min | 23.0 | 16.0 | 28 | 9.0 | |
Max | 68.0 | 69.0 | 44 | 66.0 | |
Var | 203.5 | 128.3 | 42.2 | 238.6 | |
2 Members | % | 2 (0.3%) | 24.0 (4.2%) | 1.0 (0.17%) | 5.0 (0.87%) |
Mean | 50.5 | 45.4 | 32.0 | 34.2 | |
Min | 39 | 1.0 | 32.0 | 9.0 | |
Max | 62 | 70.0 | 32.0 | 47.0 | |
Var | 132.2 | 377.6 | 0.0 | 194.1 | |
None | % | 66 (11.5%) | 337.0 (59.2%) | 23.0 (4.0%) | 36.0 (6.32%) |
Mean | 33.0 | 33.6 | 33.4 | 33.3 | |
Min | 1.0 | 1.0 | 8.0 | 3.0 | |
Max | 68.0 | 70.0 | 58.0 | 62.0 | |
Var | 242.0 | 186.4 | 150.5 | 190.2 |
↓ Diarrhea | Antibiotics | Antiemetics | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Drugs → | Ages | ORS | AZI | MET | CIP | CEF | OND | DOM | TMS | LOP | PAR | OME | PAN | RAN | VIT | MIN |
1st time | Count | 242 | 218 | 156 | 102 | 48 | 112 | 20 | 63 | 112 | 39 | 57 | 38 | 200 | 38 | 1 |
Mean | 31.9 | 33.5 | 31.3 | 26.9 | 28.1 | 30.9 | 27.1 | 30.1 | 31.7 | 32.1 | 30.7 | 32.8 | 31.6 | 32.7 | 49 | |
Min | 1.0 | 1.0 | 1.0 | 3.0 | 2.5 | 2.0 | 3 | 8.0 | 3.0 | 2.5 | 8 | 2.5 | 2 | 1 | 49 | |
Max | 68 | 68 | 68 | 58 | 56 | 67 | 56 | 68.0 | 68 | 65 | 65 | 55 | 68 | 68 | 49 | |
Var | 174.4 | 182.6 | 175.5 | 136.9 | 149.3 | 123.2 | 198 | 138.8 | 177.3 | 234.1 | 163.6 | 193.1 | 169.1 | 191.9 | 0 | |
2nd time | Count | 84 | 82 | 67 | 36 | 19 | 37 | 6 | 23.0 | 51 | 22 | 17 | 10 | 72 | 10 | 2 |
Mean | 34.5 | 36.6 | 34.7 | 32.6 | 34 | 36.6 | 41.8 | 29.6 | 35.0 | 34.1 | 32.8 | 38.1 | 37 | 39.3 | 56.5 | |
Min | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 1.0 | 2 | 1.0 | 1.0 | 1 | 1.5 | 21 | 0.5 | 18 | 56 | |
Max | 70.0 | 7.0 | 70.0 | 62.0 | 55.0 | 62 | 70 | 57 | 70 | 68 | 53 | 61 | 70 | 62 | 57 | |
Var | 138.1 | 156.9 | 188.8 | 223.7 | 178.3 | 200.1 | 506.8 | 125.5 | 203.8 | 189.8 | 169 | 182.5 | 213.8 | 210.6 | 0.2 | |
3rd time | Count | 32 | 36 | 20.0 | 6.0 | 5 | 16 | 4 | 8.0 | 23 | 10 | 8 | 6 | 32 | 8 | 4 |
Mean | 39.7 | 40 | 37.1 | 33.3 | 36.2 | 35.3 | 58.2 | 40.2 | 37.2 | 38.9 | 39.4 | 47.3 | 40.8 | 41.1 | 38 | |
Min | 16 | 18 | 16.0 | 16.0 | 16 | 16 | 49 | 20.0 | 16 | 26 | 33 | 32 | 16 | 32 | 32 | |
Max | 64 | 64 | 59.0 | 64.0 | 67 | 64 | 67 | 68 | 59 | 64 | 46 | 67 | 75 | 62 | 45 | |
Var | 137.7 | 109.8 | 88.3 | 258.2 | 298.6 | 170 | 40.7 | 217.6 | 98.1 | 91.3 | 17.7 | 205.9 | 174.4 | 81.1 | 31.5 | |
>3 times | Count | 52 | 52 | 39 | 16.0 | 3 | 31 | 6 | 17 | 30 | 14 | 14 | 7 | 39 | 14 | - |
Mean | 49.2 | 50.5 | 50.3 | 49.5 | 48.7 | 54.3 | 56.8 | 47.2 | 51.6 | 49.9 | 49.4 | 54.7 | 51.8 | 54.5 | - | |
Min | 22 | 22 | 27 | 27.0 | 27 | 29 | 27 | 29 | 27 | 32 | 27 | 39 | 29 | 39 | - | |
Max | 69 | 69 | 70.0 | 68.0 | 69 | 70 | 70 | 66 | 69 | 64 | 65 | 70 | 69 | 67 | - | |
Var | 131.2 | 117.5 | 139.7 | 187.2 | 294.9 | 129.7 | 270.5 | 86.5 | 162.4 | 99.5 | 100.7 | 161.6 | 147.7 | 71.2 | - | |
Total | Count | 410 | 388 | 282 | 160 | 75 | 196 | 36 | 111 | 216 | 85 | 96 | 51 | 343 | 70 | 7 |
Mean | 35.2 | 37 | 35.2 | 30.7 | 30.9 | 36 | 37.9 | 33.4 | 35.8 | 36.4 | 34.5 | 38.6 | 35.9 | 38.9 | 44.9 | |
Min | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 1.0 | 2 | 1.0 | 1.0 | 1 | 1.5 | 2.5 | 0.5 | 1 | 32 | |
Max | 70.0 | 70 | 70 | 68 | 69 | 70 | 70 | 68.0 | 70.0 | 68 | 65 | 70 | 75 | 68 | 57 | |
Var | 191.7 | 193.6 | 207.6 | 211.6 | 194.5 | 210.6 | 417.8 | 175.5 | 216.9 | 224.2 | 186.9 | 251.3 | 218.5 | 228.2 | 86.1 |
Symptoms | Attributes | Data Classification (in%) | |||
---|---|---|---|---|---|
1st Time | 2nd Time | 3rd Time | >3 Times | ||
1st symptom | Abdominal Pain | 211 (2–68) | 80 (1–62) | 34 (20–64) | 55 (22–70) |
Vomiting | 31 (1–56) | 6 (17–39) | 3 (16–42) | 3 (44–66) | |
Weakness | 12 (16–68) | 4 (25–55) | 1 (33–33) | 1 (46–46) | |
No Symptoms | 27 (3–65) | 14 (2–70) | 1 (42–42) | 6 (27–66) | |
Fever | 7 (3–62) | 5 (22–48) | 2 (26–37) | - | |
Nausea | 20 (11–58) | 9 (28–53) | 1 (22–22) | 5 (29–65) | |
Acute Watery Diarrhea | 10 (15–54) | - | 1 (49) | 1 (42) | |
Fatigue | 11 (22–62) | 4 (16–57) | - | 1 (47) | |
Dry Mouth | 3 (30–39) | - | - | - | |
2nd symptom | No Symptoms | 184 (3–68) | 65 (1–70) | 19 (16–59) | 31 (22–70) |
Acute Watery Diarrhea | 28 (1–65) | 2 (26–28) | 4 (35–64) | 1 (54) | |
Vomiting | 64 (2–56) | 20 (1–62) | 8 (21–64) | 11 (38–68) | |
Fever | 12 (15–40) | 13 (1–57) | 4 (35–46) | 11 (29–60) | |
Abdominal Pain | 9 (20–58) | 4 (28–39) | - | - | |
Nausea | 11 (13–50) | 7 (16–51) | 4 (37–42) | 11 (40–69) | |
Weakness | 21 (16–49) | 4 (18–62) | 4 (32–42) | 6 (35–63) | |
Headache | 3 (9–38) | 7 (31–51) | - | 1 (44) |
Symptoms | Attributes | Data Classification (in%) | |||
---|---|---|---|---|---|
1st Time | 2nd Time | 3rd Time | >3 Times | ||
3rd Symptom | No Symptoms | 95.19 | 93.29 | 79.69 | 87.37 |
Fever | 0.27 | 0.67 | 1.56 | 2.11 | |
Abdominal Pain | 1.07 | 0.67 | 3.13 | 1.05 | |
Nausea | 0.80 | 1.34 | 4.69 | 2.10 | |
Acute Watery Diarrhea | 0.53 | 0.67 | 1.56 | 3.16 | |
Weakness | 0.80 | 2.01 | 4.69 | 2.10 | |
Vomiting | 1.33 | 1.34 | 4.69 | 2.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gollapalli, M. Ensemble Machine Learning Model to Predict the Waterborne Syndrome. Algorithms 2022, 15, 93. https://doi.org/10.3390/a15030093
Gollapalli M. Ensemble Machine Learning Model to Predict the Waterborne Syndrome. Algorithms. 2022; 15(3):93. https://doi.org/10.3390/a15030093
Chicago/Turabian StyleGollapalli, Mohammed. 2022. "Ensemble Machine Learning Model to Predict the Waterborne Syndrome" Algorithms 15, no. 3: 93. https://doi.org/10.3390/a15030093
APA StyleGollapalli, M. (2022). Ensemble Machine Learning Model to Predict the Waterborne Syndrome. Algorithms, 15(3), 93. https://doi.org/10.3390/a15030093