An Evasion Attack against Stacked Capsule Autoencoder
Abstract
:1. Introduction
- We propose an evasion attack against the SCAE in which the attacker can compute the perturbation based on the output of the capsules in the model to generate adversarial samples that lead to misclassification of the SCAE;
- The attack achieves a high attack success rate on various datasets, which confirms that the SCAE has a security vulnerability that allows for the generation of adversarial samples without changing the original structure of the image to fool the unsupervised classifier in the SCAE.
2. Related Works
2.1. Capsule Network
2.2. Poisoning Attacks and Evasion Attacks
2.3. Security Threats of the Capsule Network
3. Stacked Capsule Autoencoder
4. Proposed Evasion Attack
- Computing the Perturbation with Gradient Direction Update (GDU): in this algorithm, the adversarial sample is iteratively updated according to the direction of gradient of the target function ;
- Computing the Perturbation with Pixel Saliency to Capsules (PSC): in this algorithm, we iteratively choose and modify a pair of pixels which contributes most to the value of the target function until the adversarial sample cannot be classified correctly;
- Computing the Perturbation with Optimizer (OPT): in this algorithm, an optimizer is used to minimize the value of the target function so as to generate the perturbation which causes misclassification.
4.1. Identifying the Object Capsule Subset
4.2. Computing the Perturbation
4.2.1. Computing the Perturbation with Gradient Direction Update
Algorithm 1: Generating the perturbation with gradient direction update. |
|
4.2.2. Computing the Perturbation with Pixel Saliency to Capsules
Algorithm 2: Generating the perturbation with pixel saliency to capsules. |
|
4.2.3. Computing the Perturbation with Optimizer
Algorithm 3: Generating the perturbation with optimizer. |
|
4.2.4. Complexity of the Algorithms
5. Experimental Evaluation
5.1. Experimental Setup
5.2. Experimental Method
5.2.1. Experimental Settings for GDU
5.2.2. Experimental Settings for PSC
5.2.3. Experimental Settings for OPT
5.3. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuhn, H.W. The hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J. Adversarial Attack to Capsule Networks. Available online: https://github.com/jaesik817/adv_attack_capsnet (accessed on 11 March 2021).
- Michels, F.; Uelwer, T.; Upschulte, E.; Harmeling, S. On the vulnerability of capsule networks to adversarial attacks. arXiv 2019, arXiv:1906.03612. [Google Scholar]
- Marchisio, A.; Nanfa, G.; Khalid, F.; Hanif, M.A.; Martina, M.; Shafique, M. CapsAttacks: Robust and imperceptible adversarial attacks on capsule networks. arXiv 2019, arXiv:1901.09878. [Google Scholar]
- De Marco, A. Capsule Networks Robustness against Adversarial Attacks and Affine Transformations. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2020. [Google Scholar]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U., von Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; 2017; pp. 3856–3866. Available online: https://arxiv.org/abs/1710.09829 (accessed on 11 March 2021).
- Hinton, G.E.; Sabour, S.; Frosst, N. Matrix capsules with EM routing. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. Conference Track Proceedings. [Google Scholar]
- Kosiorek, A.R.; Sabour, S.; Teh, Y.W.; Hinton, G.E. Stacked capsule autoencoders. In Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R., Eds.; 2019; pp. 15486–15496. Available online: https://arxiv.org/abs/1906.06818 (accessed on 11 March 2021).
- Lee, J.; Lee, Y.; Kim, J.; Kosiorek, A.R.; Choi, S.; Teh, Y.W. Set Transformer: A Framework for Attention-Based Permutation-Invariant Neural Networks. In Proceedings of the Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; 2019; Volume 97, pp. 3744–3753. [Google Scholar]
- Akhtar, N.; Mian, A.S. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 2018, 6, 14410–14430. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Li, B.; Lu, K.; Song, D. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv 2017, arXiv:1712.05526. [Google Scholar]
- Zhong, H.; Liao, C.; Squicciarini, A.C.; Zhu, S.; Miller, D.J. Backdoor embedding in convolutional neural network models via invisible perturbation. In Proceedings of the CODASPY ’20: Tenth ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 16–18 March 2020; Roussev, V., Thuraisingham, B.M., Carminati, B., Kantarcioglu, M., Eds.; 2020; pp. 97–108. [Google Scholar]
- Shafahi, A.; Huang, W.R.; Najibi, M.; Suciu, O.; Studer, C.; Dumitras, T.; Goldstein, T. Poison frogs! targeted clean-label poisoning attacks on neural networks. In Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, QC, Canada, 3–8 December 2018; Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; 2018; pp. 6106–6116. Available online: https://arxiv.org/abs/1804.00792 (accessed on 11 March 2021).
- Saha, A.; Subramanya, A.; Pirsiavash, H. Hidden trigger backdoor attacks. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020; AAAI Press: Palo Alto, CA, USA, 2020; pp. 11957–11965. [Google Scholar]
- Dai, J.; Chen, C.; Li, Y. A backdoor attack against LSTM-based text classification systems. IEEE Access 2019, 7, 138872–138878. [Google Scholar] [CrossRef]
- Yao, Y.; Li, H.; Zheng, H.; Zhao, B.Y. Latent backdoor attacks on deep neural networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, 11–15 November 2019; Cavallaro, L., Kinder, J., Wang, X., Katz, J., Eds.; 2019; pp. 2041–2055. Available online: https://dl.acm.org/doi/abs/10.1145/3319535.3354209 (accessed on 11 March 2021).
- Shen, J.; Zhu, X.; Ma, D. TensorClog: An imperceptible poisoning attack on deep neural network applications. IEEE Access 2019, 7, 41498–41506. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, W.R.; Li, H.; Taylor, G.; Studer, C.; Goldstein, T. Transferable clean-label poisoning attacks on deep neural nets. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; 2019; Volume 97, pp. 7614–7623. Available online: http://proceedings.mlr.press/v97/zhu19a.html (accessed on 11 March 2021).
- Liu, Y.; Ma, S.; Aafer, Y.; Lee, W.-C.; Zhai, J.; Wang, W.; Zhang, X. Trojaning attack on neural networks. In Proceedings of the 25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego, CA, USA, 18–21 February 2018; The Internet Society: Reston, VA, USA, 2018. [Google Scholar]
- Kwon, H.; Yoon, H.; Park, K.-W. Selective poisoning attack on deep neural networks. Symmetry 2019, 11, 892. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing properties of neural networks. In Proceedings of the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014; Conference Track Proceedings. Bengio, Y., LeCun, Y., Eds.; 2014. Available online: https://arxiv.org/abs/1312.6199 (accessed on 11 March 2021).
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings. Bengio, Y., LeCun, Y., Eds.; 2015. Available online: https://arxiv.org/abs/1412.6572 (accessed on 11 March 2021).
- Moosavi-Dezfooli, S.-M.; Fawzi, A.; Frossard, P. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Washington, DC, USA, 2016; pp. 2574–2582. [Google Scholar]
- Moosavi-Dezfooli, S.-M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Washington, DC, USA, 2017; pp. 86–94. [Google Scholar]
- Carlini, N.; Wagner, D.A. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017; IEEE Computer Society: Washington, DC, USA, 2017; pp. 39–57. [Google Scholar]
- Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial Examples in the Physical World. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. Workshop Track Proceedings. [Google Scholar]
- Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Bansal, A.; Mahbub, U.; Chellappa, R. UPSET and ANGRI: Breaking high performance image classifiers. arXiv 2017, arXiv:1707.01159. [Google Scholar]
- Baluja, S.; Fischer, I. Adversarial transformation networks: Learning to generate adversarial examples. arXiv 2017, arXiv:1703.09387. [Google Scholar]
- Cissé, M.; Adi, Y.; Neverova, N.; Keshet, J. Houdini: Fooling deep structured prediction models. arXiv 2017, arXiv:1707.05373. [Google Scholar]
- Din, S.U.; Akhtar, N.; Younis, S.; Shafait, F.; Mansoor, A.; Shafique, M. Steganographic universal adversarial perturbations. Pattern Recognit. Lett. 2020, 135, 146–152. [Google Scholar] [CrossRef]
- Brendel, W.; Rauber, J.; Bethge, M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. Conference Track Proceedings. [Google Scholar]
- Papernot, N.; McDaniel, P.D.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings. In Proceedings of the IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, 21–24 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 372–387. [Google Scholar]
- Kosiorek, A. Stacked Capsule Autoencoders. Available online: https://github.com/akosiorek/stacked_capsule_autoencoders (accessed on 24 September 2020).
Algorithm | GDU | PSC | OPT |
---|---|---|---|
Num of iterations | |||
Gradient calculation per iteration | |||
Update of adversarial sample per iteration | Update along the sign of the gradient | Update along fixed direction | Update via the optimizer |
Num of pixels modified per iteration | All pixels | 2 | All pixels |
Dataset | MNIST | Fashion-MNIST | GTSRB |
---|---|---|---|
Canvas size | 40 | 40 | 40 |
Num of part capsules | 24 | 24 | 40 |
Num of object capsules | 24 | 24 | 64 |
Num of channels | 1 | 1 | 3 |
Template size | 11 | 11 | 14 |
Part capsule noise scale | 4.0 | 4.0 | 0.0 |
Object capsule noise scale | 4.0 | 4.0 | 0.0 |
Part CNN | 2 × (128:2) − 2 × (128:1) | 2 × (128:2) − 2 × (128:1) | 2 × (128:1) − 2 × (128:2) |
Set transformer | 3 × (1 − 16) − 256 | 3 × (1 − 16) − 256 | 3 × (2 − 64) − 256 |
Optimizer Parameter | Value |
---|---|
Algorithm | RMSProp |
Learning rate | 3 × 10−5 |
Momentum | 0.9 |
1 × 10−6 | |
Learning rate decay steps | 10,000 |
Learning rate decay rate | 0.96 |
Batch size | 100 |
Dataset | MNIST | Fashion-MNIST | GTSRB |
---|---|---|---|
Prior k-means classifier | 97.82 | 63.20 | 60.11 |
Posterior k-means classifier | 97.62 | 63.79 | 56.14 |
Optimizer Parameter | Value |
---|---|
Algorithm | Adam |
Learning rate | 1.0 |
0.9 | |
0.999 | |
1 × 10−8 |
Classifier | Algorithm for Computing Perturbations | Attack Success Rate | Average
Norm of | Standard Deviation of |
---|---|---|---|---|
Prior k-means classifier | GDU | 0.9790 | 2.6292 | 1.0797 |
PSC | 1.0000 | 3.7964 | 1.5333 | |
OPT | 1.0000 | 1.0839 | 0.6015 | |
Posterior k-means classifier | GDU | 0.8994 | 3.1017 | 1.3118 |
PSC | 0.9994 | 4.4982 | 1.6447 | |
OPT | 1.0000 | 1.1838 | 0.6222 |
Classifier | Algorithm for Computing Perturbations | Attack Success Rate | Average
Norm of | Standard Deviation of |
---|---|---|---|---|
Prior k-means classifier | GDU | 0.9836 | 3.0482 | 1.5615 |
PSC | 0.9960 | 4.0945 | 1.8384 | |
OPT | 1.0000 | 1.4160 | 0.8982 | |
Posterior k-means classifier | GDU | 0.9686 | 3.0768 | 1.6260 |
PSC | 0.9622 | 4.0196 | 1.9138 | |
OPT | 1.0000 | 1.3598 | 0.9856 |
Classifier | Algorithm for Computing Perturbations | Attack Success Rate | Average
Norm of | Standard Deviation of |
---|---|---|---|---|
Prior k-means classifier | GDU | 1.0000 | 2.1903 | 0.8650 |
PSC | 0.9778 | 3.7358 | 1.8549 | |
OPT | 1.0000 | 0.9633 | 0.3490 | |
Posterior k-means classifier | GDU | 1.0000 | 2.7019 | 1.2333 |
PSC | 0.9792 | 4.3079 | 2.4017 | |
OPT | 1.0000 | 0.8301 | 0.5032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Xiong, S. An Evasion Attack against Stacked Capsule Autoencoder. Algorithms 2022, 15, 32. https://doi.org/10.3390/a15020032
Dai J, Xiong S. An Evasion Attack against Stacked Capsule Autoencoder. Algorithms. 2022; 15(2):32. https://doi.org/10.3390/a15020032
Chicago/Turabian StyleDai, Jiazhu, and Siwei Xiong. 2022. "An Evasion Attack against Stacked Capsule Autoencoder" Algorithms 15, no. 2: 32. https://doi.org/10.3390/a15020032
APA StyleDai, J., & Xiong, S. (2022). An Evasion Attack against Stacked Capsule Autoencoder. Algorithms, 15(2), 32. https://doi.org/10.3390/a15020032