On an Optimal Quadrature Formula in a Hilbert Space of Periodic Functions
Abstract
:1. Introduction and Statement of the Problem
2. Main Results
3. The Extremal Function to the Error Functional for the Quadrature Formula (4)
- (a)
- is defined on the space—i.e., its value at constant is zero—and
- (b)
- is optimal; i.e., among all functionals of the form
4. The Square of the Error Functional of the Quadrature Formula (4)
5. Optimal Coefficients of the Quadrature Formula (4)
6. The Norm for the Error Functional of the Optimal Quadrature Formula
7. Numerical Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filon, L.N.G. On a quadrature formula for trigonometric integrals. Proc. Roy. Soc. Edinb. 1928, 49, 38–47. [Google Scholar] [CrossRef]
- Babuška, I. An optimal formula for computation of linear functionals. APL Mater. (Ger.) 1965, 10, 441–443. [Google Scholar]
- Boltaev, N.D.; Hayotov, A.R.; Shadimetov, K.M. Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space (0,1). Numer. Algorithms 2017, 74, 307–336. [Google Scholar] [CrossRef]
- Boltaev, N.D.; Hayotov, A.R.; Milovanović, G.V.; Shadimetov, K.M. Optimal quadrature formulas for numerical evaluation of Fourier coefficients in . J. Appl. Anal. Comput. 2017, 7, 1233–1266. [Google Scholar]
- Filin, E.A. A modification of Filon’s method of numerical integration. J. Assoc. Comput. Mach. 1960, 7, 181–184. [Google Scholar] [CrossRef]
- Hayotov, A.R.; Jeon, S.; Lee, C.-O. On an optimal quadrature formula for approximation of Fourier integrals in the space . J. Comput. Appl. Math. 2020, 372, 112713. [Google Scholar] [CrossRef]
- Hayotov, A.R.; Jeon, S.; Lee, C.-O.; Shadimetov, K.M. Optimal Quadrature Formulas for Non-periodic Functions in Sobolev Space and Its Application to CT Image Reconstruction. Filomat 2021, 35, 4177–4195. [Google Scholar] [CrossRef]
- Hayotov, A.R.; Jeon, S.; Shadimetov, K.M. Application of optimal quadrature formulas for reconstruction of CT images. J. Comput. Appl. Math. 2021, 388, 113313. [Google Scholar] [CrossRef]
- Luke, Y.L. On the computation of oscillatory integrals. Proc. Camb. Phil. Soc. 1954, 50, 269–277. [Google Scholar] [CrossRef]
- Shadimetov, K.M. Optimal Lattice Quadrature and Cubature Formulas in the Sobolev Spaces; Fan va Texnologiya: Tashkent, Russia, 2019; 224p. [Google Scholar]
- Saks, S.; Zygmund, A. Analytic Functions; Monografie Matematyczne; Instytut Matematyczny Polskiej Akademii Nauk: Warsaw, Poland, 1952. [Google Scholar]
- Zadiraka, V.K. Theory of Computations of Fourier Transforms; Naukova Dumka: Kiev, Russia, 1988; 216p. [Google Scholar]
- Zhileikin, Y.M. The errors in the approximate computation of integrals of rapidly oscillating functions. Comput. Math. Math. Phys. 1971, 11, 344–348. [Google Scholar] [CrossRef]
- Zhileikin, Y.M.; Kukarkin, A.B. Optimal calculation of integrals of rapidly oscillating functions. Comput. Math. Math. Phys. 1978, 18, 15–21. [Google Scholar] [CrossRef]
- Bakhvalov, N.S. Numerical Methods; Nauka: Moscow, Russia, 1973; 632p. [Google Scholar]
- Babuška, I. The optimal computation of Fourier coefficients. APL Mater. (Ger.) 1966, 11, 113–123. [Google Scholar] [CrossRef]
- Sobolev, S.L. Introduction to the Theory of Cubature Formulas; Nauka: Moscow, Russia, 1974; 808p. [Google Scholar]
- Sobolev, S.L.; Vaskevich, V.L. The Theory of Cubature Formulas; Siberian Division of the Russia Academy of Sciences Novosibirsk: Novosibirsk, Russia, 1996; 484p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shadimetov, K.; Hayotov, A.; Abdikayimov, B. On an Optimal Quadrature Formula in a Hilbert Space of Periodic Functions. Algorithms 2022, 15, 344. https://doi.org/10.3390/a15100344
Shadimetov K, Hayotov A, Abdikayimov B. On an Optimal Quadrature Formula in a Hilbert Space of Periodic Functions. Algorithms. 2022; 15(10):344. https://doi.org/10.3390/a15100344
Chicago/Turabian StyleShadimetov, Kholmat, Abdullo Hayotov, and Botir Abdikayimov. 2022. "On an Optimal Quadrature Formula in a Hilbert Space of Periodic Functions" Algorithms 15, no. 10: 344. https://doi.org/10.3390/a15100344
APA StyleShadimetov, K., Hayotov, A., & Abdikayimov, B. (2022). On an Optimal Quadrature Formula in a Hilbert Space of Periodic Functions. Algorithms, 15(10), 344. https://doi.org/10.3390/a15100344