Extremality of Disordered Phase of λ-Model on Cayley Trees
Abstract
:1. Introduction
2. Preliminaries
3. Splitting Gibbs Measures
4. Three-Indexed Markov Chains of the Disordered Phase
4.1. Conditions of Non-Extremality
4.2. Conditions for Extremality
- (i)
- If and
- (ii)
- If andthen the disordered phase is extreme.
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley and Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Cavender, J. Taxonomy with condence. Math. BioSci. 1978, 40, 271–280. [Google Scholar] [CrossRef]
- Steel, M.; Charleston, M. Five surprising properties of parsimoniously colored trees. Bull. Math. Biol. 1995, 57, 367–375. [Google Scholar] [CrossRef]
- Preston, C. Gibbs States on Countable Sets; Cambridge University Press: London, UK, 1974. [Google Scholar]
- Spitzer, F. Markov random fields on an infinite tree. Ann. Probab. 1975, 3, 387–394. [Google Scholar] [CrossRef]
- Georgii, H.O. Gibbs Measures and Phase Transitions; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Sinai, Y.G. Theory of Phase Transitions: Rigorous Results; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Mossel, E. Survey: Information Flow on Trees. Graphs, morphisms and statistical physics. In DIMACS Series Discrete Mathematics and Theoretical Computer Science 63; American Mathematical Society: Providence, RI, USA, 2004; pp. 155–170. [Google Scholar]
- Bleher, P.M. Extremity of the disordered phase in the Ising model on the Bethe lattice. Commun. Math. Phys. 1990, 128, 411–419. [Google Scholar] [CrossRef]
- Evans, W.; Kenyon, C.; Peres, Y.; Schulman, L.J. Broadcasting on trees and the Ising Model. Ann. Appl. Probab. 2000, 10, 410–433. [Google Scholar] [CrossRef]
- Ioffe, D. A note on the extremality of the disordered state for the Ising model on the Bethe lattice. Lett. Math. Phys. 1996, 37, 137–143. [Google Scholar] [CrossRef]
- Wu, F.Y. The Potts model. Rev. Mod. Phys. 1982, 54, 235–268. [Google Scholar] [CrossRef]
- Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Mossel, E.; Peres, Y. Information ow on trees. Ann. Appl. Probab. 2003, 13, 817–844. [Google Scholar] [CrossRef]
- Sly, A. Reconstruction for the Potts model. Ann. Probab. 2011, 39, 1365–1406. [Google Scholar] [CrossRef]
- Ganikhodjaev, N.N. On pure phases of the three-state ferromagnetic Potts model on the second order Bethe lattice. Theor. Math. Phys. 1990, 85, 1125–1134. [Google Scholar] [CrossRef]
- Külske, C.; Rozikov, U.A. Fuzzy transformations and extremaity of Gibbs measures for the Potts model on a Cayley tree. Random Struct. Algorithms 2017, 50, 636–678. [Google Scholar] [CrossRef] [Green Version]
- Rozikov, U.A. Gibbs measures of Potts model on Cayley trees: A survey and applications. Rev. Math. Phys. 2021, 33, 2130007. [Google Scholar] [CrossRef]
- Mukhamedov, F. On factor associated with the unordered phase of λ-model on a Cayley tree. Rep. Math. Phys. 2004, 53, 1–18. [Google Scholar] [CrossRef]
- Rozikov, U.A. Description of limit Gibbs measures for λ-models on Bethe lattices. Sib. Math. J. 1998, 39, 427–435. [Google Scholar] [CrossRef]
- Kissel, S.; Külske, C.; Rozikov, U.A. Hard-core and soft-core Widom-Rowlinson models on Cayley trees. J. Stat. Mech. 2019, 2019, 043204. [Google Scholar] [CrossRef] [Green Version]
- Külske, C.; Rozikov, U.A. Extremality of translation-invariant phases for three-state SOS-model on the binary tree. J. Stat. Phys. 2015, 160, 659–680. [Google Scholar] [CrossRef]
- Rahmatullaev, M.M.; Rasulova, M.A. Extremality of translation-invariant Gibbs measures for the Potts-SOS model on the Cayley tree. J. Stat. Mech. 2021, 073201. [Google Scholar] [CrossRef]
- Mukhamedov, F.; Pah, C.H.; Jamil, H. Ground states and phase transition of the λ-model on the Cayley tree. Theor. Math. Phys. 2018, 193, 304–319. [Google Scholar] [CrossRef]
- Mukhamedov, F.; Pah, C.H.; Jamil, H.; Rahmatullaev, M. On ground states and phase Transition for λ-model with the competing Potts interactions on Cayley trees. Phys. A 2020, 549, 124184. [Google Scholar] [CrossRef]
- Kesten, H.; Stigum, B.P. Additional limit theorem for indecomposable multi-dimensional Galton-Watson processes. Ann. Math. Stat. 1966, 37, 1461–1481. [Google Scholar]
- Rozikov, U.A. Gibbs Measures on Cayley Trees; World Scientific: Singapore, 2013. [Google Scholar]
- Rozikov, U.A.; Suhov, Y.M. Gibbs measures for SOS models on Cayley tree. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2006, 9, 471–488. [Google Scholar] [CrossRef] [Green Version]
- Mossel, E. Reconstruction on trees: Beating the second eigenvalue. Ann. Appl. Probab. 2001, 11, 285–300. [Google Scholar] [CrossRef]
- Martinelli, F.; Sinclair, A.; Weitz, D. Fast mixing for independent sets, coloring and other models on trees. Random Struct. Algoritms 2007, 31, 134–172. [Google Scholar] [CrossRef] [Green Version]
- Rozikov, U.A.; Khakimov, R.R.M.; Khaidarov, F.K. Extremality of the Translation-Invariant Gibbs Measures for the Potts Model on the Cayley Tree. Theor. Math. Phys. 2018, 196, 1043–1058. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhamedov, F. Extremality of Disordered Phase of λ-Model on Cayley Trees. Algorithms 2022, 15, 18. https://doi.org/10.3390/a15010018
Mukhamedov F. Extremality of Disordered Phase of λ-Model on Cayley Trees. Algorithms. 2022; 15(1):18. https://doi.org/10.3390/a15010018
Chicago/Turabian StyleMukhamedov, Farrukh. 2022. "Extremality of Disordered Phase of λ-Model on Cayley Trees" Algorithms 15, no. 1: 18. https://doi.org/10.3390/a15010018
APA StyleMukhamedov, F. (2022). Extremality of Disordered Phase of λ-Model on Cayley Trees. Algorithms, 15(1), 18. https://doi.org/10.3390/a15010018