Lower and Upper Bounds for the Discrete Bi-Directional Preemptive Conversion Problem with a Constant Price Interval
Abstract
:1. Introduction
2. Results
2.1. Problem Formulation
2.2. Calculating the Lower Bound
2.3. Calculating the Upper Bound
- the price raises twice,
- the price first raises and then falls,
- the price first falls and then raises,
- the price falls twice.
2.4. Comparison of the Competitive Ratios
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Borodin, A.; El-Yaniv, R. Online Computation and Competitive Analysis; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Mohr, E.; Ahmad, I.; Schmidt, G. Online algorithms for conversion problems. A survey. Surv. Oper. Res. Manag. Sci. 2014, 19, 87–204. [Google Scholar] [CrossRef]
- El-Yaniv, R.; Fiat, A.; Karp, R.M.; Turpin, G. Competitive analysis of financial games. In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, PA, USA, 24–27 October 1992; pp. 327–333. [Google Scholar]
- Dannoura, E.; Sakurai, K. An improvement on El-Yaniv-Fiat-Karp-Turpin’s money-making bi-directional trading strategy. Inf. Process. Lett. 1998, 66, 27–33. [Google Scholar] [CrossRef]
- Schmidt, G. Competitive analysis of bi-directional non-preemptive conversion. J. Comb. Optim. 2017, 34, 1096–1113. [Google Scholar] [CrossRef]
- Sleator, D.D.; Tarjan, R.E. Amortized Efficiency of List Update and Paging Rules. Commun. ACM 1985, 28, 202–208. [Google Scholar] [CrossRef]
- Koutsoupias, E.; Papadimitriou, C.H. Beyond Competitive Analysis. SIAM J. Comput. 2000, 30, 300–317. [Google Scholar] [CrossRef] [Green Version]
- El-Yaniv, R. Competitive solutions for online financial problems. ACM Comput. Surv. 1998, 30, 28–69. [Google Scholar] [CrossRef]
- El-Yaniv, R.; Fiat, A.; Karp, R.M.; Turpin, G. Optimal Search and One-Way Trading Online Algorithms. Algorithmica 2001, 30, 101–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, Y.; Zheng, F.; Dong, Y. Optimal algorithms for online time series search and one-way trading with interrelated prices. J. Comb. Optim. 2012, 23, 159–166. [Google Scholar] [CrossRef]
- Schroeder, P.; Kacem, I. New algorithms for online time series search with interrelated prices. In Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies, Paris, France, 23–26 April 2019; pp. 1682–1687. [Google Scholar]
- Schroeder, P.; Kacem, I.; Schmidt, G. Optimal online algorithms for the portfolio selection problem, bi-directional trading and -search with interrelated prices. RAIRO Oper. Res. 2019, 53, 559–576. [Google Scholar] [CrossRef]
- Damaschke, P.; Ha, P.H.; Tsigas, P. Online Search with Time-Varying Price Bounds. Algorithmica 2009, 55, 619–642. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, J.; Panagiotou, K.; Steger, A. Optimal Algorithms for k-Search with Application in Option Pricing. Algorithmica 2009, 55, 311–328. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Zheng, F.; Liu, M. Online algorithms for the general k-search problem. Inf. Process. Lett. 2011, 111, 678–682. [Google Scholar] [CrossRef]
- Fung, S.P.Y. Optimal Online Two-Way Trading with Bounded Number of Transactions. Algorithmica 2019, 81, 4238–4257. [Google Scholar] [CrossRef] [Green Version]
- Li, F. Two-Way Currency Trading Algorithms in the Discrete Setting. In Algorithmic Aspects in Information and Management; Springer: Cham, Switzerland, 2016; Volume 9849, pp. 169–178. [Google Scholar]
- Dochow, R. Online Algorithms for the Portfolio Selection Problem; Springer Gabler: Wiesbaden, Germany, 2016. [Google Scholar]
- Schwarz, M. Kompetitive Algorithmen für den Börsenhandel. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 2019. [Google Scholar]
M | 1000 | 100 | 10 | 2 | |
---|---|---|---|---|---|
EBA | 2 | 1.9387 | 1.8182 | 1.5195 | 1.1716 |
5 | 11.0949 | 7.4843 | 3.5321 | 1.5494 | |
7 | 36.9558 | 20.4750 | 6.6381 | 1.9286 | |
13 | 1365.7294 | 419.2238 | 44.0638 | 3.7193 | |
bTH | 2 | 1.9387 | 1.8182 | 1.5195 | 1.1716 |
5 | 12.1948 | 7.6472 | 3.4894 | 1.5385 | |
7 | 61.8000 | 26.8163 | 7.2430 | 1.9615 | |
13 | 9130.6154 | 1233.7339 | 66.2846 | 4.0865 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, M. Lower and Upper Bounds for the Discrete Bi-Directional Preemptive Conversion Problem with a Constant Price Interval. Algorithms 2020, 13, 42. https://doi.org/10.3390/a13020042
Schwarz M. Lower and Upper Bounds for the Discrete Bi-Directional Preemptive Conversion Problem with a Constant Price Interval. Algorithms. 2020; 13(2):42. https://doi.org/10.3390/a13020042
Chicago/Turabian StyleSchwarz, Michael. 2020. "Lower and Upper Bounds for the Discrete Bi-Directional Preemptive Conversion Problem with a Constant Price Interval" Algorithms 13, no. 2: 42. https://doi.org/10.3390/a13020042
APA StyleSchwarz, M. (2020). Lower and Upper Bounds for the Discrete Bi-Directional Preemptive Conversion Problem with a Constant Price Interval. Algorithms, 13(2), 42. https://doi.org/10.3390/a13020042