Refinement of Background-Subtraction Methods Based on Convolutional Neural Network Features for Dynamic Background
Abstract
:1. Introduction
2. The Proposed Method
Algorithm 1: The proposed method. |
Input: : input image of video, t = 1, 2, …, L, L is the frame number of the video; Output: : the foreground of the input image. . Calculate the PSNR values between and the grayscale image of . Find the numbers of and of . While Do and Calculate using (4) Obtain the foreground image using Equation (5) |
3. Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Suresh, S.; Deepak, P.; Chitra, K. An efficient low cost background subtraction method to extract foreground object during human tracking. In Proceedings of the International Conference on Circuits, Power and Computing Technologies, Nagercoil, India, 20–21 March 2014; pp. 1432–1436. [Google Scholar]
- Zhou, X.; Yang, C.; Yu, W. Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Unzueta, L.; Nieto, M.; Cortés, A.; Barandiaran, J.; Otaegui, O.; Sánchez, P. Adaptive multi-cue background subtraction for robust vehicle counting and classification. IEEE Trans. Intell. Transp. Syst. 2012, 13, 527–540. [Google Scholar] [CrossRef]
- Tsai, T.H.; Lin, C.-Y.; Li, S.-Y. Algorithm and architecture design of human-machine interaction in foreground object detection with dynamic scene. IEEE Trans. Circuits Syst. Video Technol. 2013, 23, 15–29. [Google Scholar] [CrossRef]
- Bouwmans, T. Traditional and recent approaches in background modeling for foreground detection: An overview. Comput. Sci. Rev. 2014, 11, 31–66. [Google Scholar] [CrossRef]
- Sobral, A.; Vacavant, A. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 2014, 122, 4–21. [Google Scholar] [CrossRef]
- Stauffer, C.; Grimson, W.E.L. Adaptive background mixture models for real-time tracking. Comput. Vis. Pattern Recognit. 1999, 2, 246–252. [Google Scholar]
- Elgammal, A.; Duraiswami, R.; Harwood, D.; Davis, L.S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 2002, 90, 1151–1163. [Google Scholar] [CrossRef]
- Barnich, O.; Droogenbroeck, M.V. ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 2011, 20, 1709–1724. [Google Scholar] [CrossRef]
- Droogenbroeck, M.V.; Paquot, O. Background subtraction: Experiments and improvements for ViBe. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 32–37. [Google Scholar]
- Hofmann, M.; Tiefenbacher, P.; Rigoll, G. Background segmentation with feedback: The pixel-based adaptive segmenter. In Proceedings of the Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 38–43. [Google Scholar]
- St-Charles, P.-L.; Bilodeau, G.-A. Improving background subtraction using local binary similarity patterns. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, 24–26 March 2014; pp. 509–515. [Google Scholar]
- St-Charles, P.-L.; Bilodeau, G.-A.; Bergevin, R. Flexible background subtraction with selfbalanced local sensitivity? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Columbus, OH, USA, 24–27 June 2014. [Google Scholar]
- Candes, E.J.; Li, X.; Ma, Y. Robust principal component analysis. J. ACM 2011, 58, 1–35. [Google Scholar] [CrossRef]
- Bouwmans, T.; Sobral, A.; Javed, S.; Jung, S.K.; Zahzah, E. Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 2017, 23, 1–17. [Google Scholar] [CrossRef]
- Bouwmans, T.; Javed, S.; Sultana, M.; Jung, S.K. Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. Neural Netw. 2019, 117, 8–66. [Google Scholar] [CrossRef] [PubMed]
- Braham, M.; Droogenbroeck, M.V. Deep background subtraction with scene-specific convolutional neural networks. In Proceedings of the International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 23–25 May 2016; pp. 1–4. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Babaee, M.; Dinh, D.T.; Rigoll, G. A deep convolutional neural network for video sequence background subtraction. Pattern Recognit. 2018, 76, 635–649. [Google Scholar] [CrossRef]
- Wang, Y.; Jodoin, P.-M.; Porikli, F.; Janusz, K.; Benezeth, Y.; Ishwar, P. Cdnet 2014: An expanded change detection benchmark datase. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 387–394. [Google Scholar]
- Bautista, C.M.; Dy, C.A.; Manalac, M.I.; Orbe, R.A.; Cordel, M. Convolutional neural network for vehicle detection in low resolution traffic videos. In Proceedings of the 2016 IEEE Region 10 Symposium (TENSYMP), Bali, Indonesia, 9–11 May 2016; pp. 277–281. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Zeng, D.; Zhu, M. Background subtraction using multiscale fully convolutional network. IEEE Access 2018, 6, 16010–16021. [Google Scholar] [CrossRef]
- Cinelli, L.P. Anomaly Detection in Surveillance Videos Using Deep Residual Networks. Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yang, L.; Li, J.; Luo, Y.; Zhao, Y.; Cheng, H.; Li, J. Deep background modeling using fully convolutional network. IEEE Trans. Intell. Transp. Syst. 2018, 19, 254–262. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Z.; Jodoin, P.-M. Interactive deep learning method for segmenting moving objects. Pattern Recognit. Lett. 2017, 96, 66–75. [Google Scholar] [CrossRef]
- Lim, L.A.; Keles, H.Y. Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding. arXiv 2018, arXiv:1801.02225. [Google Scholar]
- Li, X.; Ye, M.; Liu, Y.; Zhu, C. Adaptive deep convolutional neural networks for scene-specific object detection. IEEE Trans. Circuits Syst. Video Technol. 2017, 16, 1519–1526. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Zhang, Z.; Wu, F.; Zhao, L. Deep learning driven blockwise moving object detection with binary scene modeling. Neurocomputing 2015, 168, 454–463. [Google Scholar] [CrossRef]
- Zhao, C.; Cham, T.-J.; Ren, X.; Cai, J.; Zhu, H. Background subtraction based on deep pixel distribution learning. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018. [Google Scholar]
- Lim, K.; Jang, W.-D.; Kim, C.-S. Background subtraction using encoder-decoder structured convolutional neural network. In Proceedings of the 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017. [Google Scholar]
- Wang, X.; Liu, L.; Li, G.; Dong, X.; Zhao, P.; Feng, X. Background subtraction on depth videos with convolutional neural networks. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018. [Google Scholar]
- Yu, T.; Yang, J.; Lu, W. Combining Background Subtraction and Convolutional Neural Network for Anomaly Detection in Pumping-Unit Surveillance. Algorithms 2019, 12, 115. [Google Scholar] [CrossRef]
- Zeng, D.; Zhu, M.; Kuijper, A. Combining background subtraction algorithms with convolutional neural network. J. Electron. Imaging 2019, 28, 013011. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3320–3328. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for largescale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Sobral, A. Bgslibrary: An opencv c++ background subtraction library. In Proceedings of the Ix Workshop De Visao Computacional, Rio de Janeiro, Brazil, 3–5 June 2013; p. 2. [Google Scholar]
- Shafiee, M.J.; Siva, P.; Fieguth, P.; Wong, A. Embedded motion detection via neural response mixture background modeling. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 837–844. [Google Scholar]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
Categories | Methods, Authors | Features | Learning Types | Scene |
---|---|---|---|---|
traditional methods | GMM | hand-crafted | unsupervised | universal |
KDE | ||||
ViBe | ||||
PBAS | ||||
LOBSTER | ||||
SuBSENSE | ||||
RPCA | ||||
CNN-based | ConvNet [17] | learned | supervised | specific |
Babaee [19] | ||||
Baustita [21] | ||||
Wang [27] | ||||
FgSegNet [28] | ||||
Li [29] | ||||
Zhao [31] | ||||
Lim [32] | ||||
Wang [33] | ||||
Fully CNNs | Zeng [23,35] | learned | supervised | specific |
Cinelli [24] | ||||
Yang [26] |
Layer | Input Size | Kernel | Stride | Padding | Output Size |
---|---|---|---|---|---|
conv1_1 | W × H × 3 | 3 × 3 | 1 | yes | W × H × 64 |
Videos | Size | Number of Frames | Dynamic Scenes |
---|---|---|---|
Boats | 320 × 240 | 7999 | water rippling |
Canoe | 320 × 240 | 1189 | water rippling |
Fountain01 | 432 × 288 | 1184 | fountains |
Fountain02 | 432 × 288 | 1499 | fountains |
Overpass | 320 × 240 | 3000 | waving trees |
Fall | 720 × 480 | 4000 | waving trees |
Category | Methods | Recall | FPR | FNR | PBC | Precision | F-Measure |
---|---|---|---|---|---|---|---|
dynamic background | GMM | 0.7568 | 0.0440 | 0.2432 | 4.7859 | 0.2109 | 0.3062 |
GMMcon | 0.7683 | 0.0232 | 0.2317 | 2.7252 | 0.3484 | 0.4338 | |
SuBSENSE | 0.7713 | 0.0006 | 0.2287 | 0.4084 | 0.8915 | 0.8132 | |
SuBSENSEcon | 0.8228 | 0.0017 | 0.1772 | 0.3645 | 0.8228 | 0.8138 | |
PBAS | 0.5634 | 0.0005 | 0.4366 | 0.7252 | 0.8787 | 0.6154 | |
PBAScon | 0.6095 | 0.0005 | 0.3905 | 0.5800 | 0.8848 | 0.6712 | |
KDE | 0.8562 | 0.0788 | 0.1438 | 7.8212 | 0.1062 | 0.1855 | |
KDEcon | 0.4765 | 0.0041 | 0.5235 | 0.9584 | 0.5691 | 0.4884 | |
LOBSTER | 0.7646 | 0.0189 | 0.2354 | 2.0795 | 0.5948 | 0.5682 | |
LOBSTERcon | 0.6572 | 0.0047 | 0.3428 | 0.7922 | 0.7411 | 0.6367 | |
ViBe | 0.5852 | 0.0100 | 0.4148 | 1.3884 | 0.4521 | 0.4733 | |
ViBecon | 0.6020 | 0.0047 | 0.3980 | 0.8203 | 0.6237 | 0.5739 |
Methods | Recall | FPR | FNR | PBC | Precision | F-Measure |
---|---|---|---|---|---|---|
NeRM [39] | 50.0% | 80.0% | −21.9% | 74.5% | 32.4% | 40.0% |
Proposed | 1.5% | 47.3% | 4.7% | 43.1% | 65.2% | 41.7% |
Videos | Size | Number of Frames | Dynamic Scenes |
---|---|---|---|
backdoor | 320 × 240 | 2000 | Shadow and illumination change |
bungalows | 360 × 240 | 1700 | |
busStation | 360 × 240 | 1250 | |
copyMachine | 720 × 480 | 3400 | |
cubicle | 352 × 240 | 7400 | |
peopleInShade | 380 × 244 | 1199 |
Category | Methods | Recall | FPR | FNR | PBC | Precision | F-Measure |
---|---|---|---|---|---|---|---|
shadow | GMM | 0.7020 | 0.0124 | 0.2980 | 2.6666 | 0.7128 | 0.6862 |
GMMcon | 0.7190 | 0.0127 | 0.2810 | 2.7459 | 0.7497 | 0.7240 | |
SuBSENSE | 0.9469 | 0.0081 | 0.0531 | 0.9960 | 0.8627 | 0.8998 | |
SuBSENSEcon | 0.9091 | 0.0085 | 0.0909 | 1.1977 | 0.8661 | 0.8850 | |
PBAS | 0.6917 | 0.0076 | 0.3083 | 2.1497 | 0.8487 | 0.7455 | |
PBAScon | 0.7189 | 0.0079 | 0.2811 | 2.2203 | 0.8655 | 0.7729 | |
KDE | 0.9269 | 0.0757 | 0.0731 | 7.6690 | 0.3913 | 0.5176 | |
KDEcon | 0.6899 | 0.0122 | 0.3101 | 2.5481 | 0.7901 | 0.7275 | |
LOBSTER | 0.8038 | 0.0063 | 0.1962 | 1.4937 | 0.9008 | 0.8452 | |
LOBSTERcon | 0.8773 | 0.0070 | 0.1227 | 1.1703 | 0.8739 | 0.8709 | |
ViBe | 0.6600 | 0.0064 | 0.3400 | 2.0278 | 0.8622 | 0.7397 | |
ViBecon | 0.6944 | 0.0062 | 0.3056 | 1.9924 | 0.8877 | 0.7746 |
Videos | Methods | Recall | FPR | FNR | PBC | Precision | F-Measure |
---|---|---|---|---|---|---|---|
boats | GMM | 0.5418 | 0.0627 | 0.4582 | 6.5735 | 0.0635 | 0.1136 |
GMMPSNR | 0.5563 | 0.0264 | 0.4437 | 2.9650 | 0.1417 | 0.2259 | |
GMMSSIM | 0.3483 | 0.0272 | 0.6517 | 3.1088 | 0.0749 | 0.1232 | |
canoe | GMM | 0.5762 | 0.0673 | 0.4238 | 8.2353 | 0.2734 | 0.3708 |
GMMPSNR | 0.6212 | 0.0261 | 0.3788 | 4.1436 | 0.5190 | 0.5655 | |
GMMSSIM | 0.4163 | 0.0474 | 0.5837 | 6.6359 | 0.2439 | 0.3076 | |
fall | GMM | 0.8427 | 0.0830 | 0.1573 | 8.4436 | 0.1638 | 0.2744 |
GMMPSNR | 0.8513 | 0.0553 | 0.1487 | 5.7039 | 0.2306 | 0.3629 | |
GMMSSIM | 0.7391 | 0.0482 | 0.2609 | 5.1936 | 0.2168 | 0.3352 | |
fountain01 | GMM | 0.8934 | 0.0274 | 0.1066 | 2.7464 | 0.0375 | 0.0721 |
GMMPSNR | 0.9096 | 0.0211 | 0.0904 | 2.1222 | 0.0506 | 0.0958 | |
GMMSSIM | 0.7835 | 0.0168 | 0.2165 | 1.7016 | 0.0372 | 0.0710 | |
fountain02 | GMM | 0.9162 | 0.0058 | 0.0838 | 0.6076 | 0.3173 | 0.4713 |
GMMPSNR | 0.9031 | 0.0026 | 0.0969 | 0.2856 | 0.5251 | 0.6641 | |
GMMSSIM | 0.7211 | 0.0021 | 0.2789 | 0.2732 | 0.4212 | 0.5318 | |
overpass | GMM | 0.7704 | 0.0178 | 0.2296 | 2.1093 | 0.4100 | 0.5352 |
GMMPSNR | 0.7686 | 0.0077 | 0.2314 | 1.1307 | 0.6237 | 0.6886 | |
GMMSSIM | 0.4666 | 0.0108 | 0.5334 | 1.7817 | 0.3694 | 0.4124 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T.; Yang, J.; Lu, W. Refinement of Background-Subtraction Methods Based on Convolutional Neural Network Features for Dynamic Background. Algorithms 2019, 12, 128. https://doi.org/10.3390/a12070128
Yu T, Yang J, Lu W. Refinement of Background-Subtraction Methods Based on Convolutional Neural Network Features for Dynamic Background. Algorithms. 2019; 12(7):128. https://doi.org/10.3390/a12070128
Chicago/Turabian StyleYu, Tianming, Jianhua Yang, and Wei Lu. 2019. "Refinement of Background-Subtraction Methods Based on Convolutional Neural Network Features for Dynamic Background" Algorithms 12, no. 7: 128. https://doi.org/10.3390/a12070128
APA StyleYu, T., Yang, J., & Lu, W. (2019). Refinement of Background-Subtraction Methods Based on Convolutional Neural Network Features for Dynamic Background. Algorithms, 12(7), 128. https://doi.org/10.3390/a12070128