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Abstract: Advancing the background-subtraction method in dynamic scenes is an ongoing timely
goal for many researchers. Recently, background subtraction methods have been developed with
deep convolutional features, which have improved their performance. However, most of these
deep methods are supervised, only available for a certain scene, and have high computational cost.
In contrast, the traditional background subtraction methods have low computational costs and can be
applied to general scenes. Therefore, in this paper, we propose an unsupervised and concise method
based on the features learned from a deep convolutional neural network to refine the traditional
background subtraction methods. For the proposed method, the low-level features of an input image
are extracted from the lower layer of a pretrained convolutional neural network, and the main features
are retained to further establish the dynamic background model. The evaluation of the experiments
on dynamic scenes demonstrates that the proposed method significantly improves the performance
of traditional background subtraction methods.
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1. Introduction

Background subtraction methods are widely applied in the realm of computer vision applications,
for example, object tracking [1], moving object detection [2], intelligent video surveillance [3],
and human–computer interaction [4]. Detailed overviews of background subtraction methods are
available in [5,6]. In the past decade, several traditional background subtraction methods have been
developed to segment foreground objects from the background in various video scenes. A parametric
probabilistic background model, the Gaussian mixture model (GMM) [7], takes advantage of multiple
normal distributions to fit the changes of pixels in order to deal with dynamic backgrounds, such as
slow-moving objects, swaying trees, and water rippling. The Kernel density estimation (KDE) [8],
a widely used nonparametric background method, estimates the distribution of pixels directly from the
previously observed data without making any assumptions of the underlying distribution. Barnich et al.
proposed using the visual background extractor (ViBe) method [9] for a sample-based background
model. This method establishes the background model by aggregating previous input pixel information.
The ViBe method adopts a stochastic renewal strategy for the phases of estimating and updating
the background model and assumes that the information between adjacent pixels is transmitted [10].
Similarly, the pixel-based adaptive segmenter (PBAS) [11], which models the background by a history
of recently observed pixel values, is also a nonparametric background modeling paradigm that
introduces cybernetics to update threshold and background adaptively. The procedure for foreground
detection by PBAS is similar to that by ViBe. Inspired by the low-cost and highly-efficient ViBe method,
St-Charles et al. presented the local binary similarity segmenter (LOBSTER) [12] method for background
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subtraction, which uses a spatiotemporal binary similarity descriptor instead of relying solely on
pixel intensities as its core component. The SuBSENSE method was proposed by St-Charles [13].
This method adopts the principle of sample consistency and feedback mechanism, and therefore the
background model adapts to the diversity of a complex background. The fundamental idea of these
traditional methods is as follows: First, establish a statistical background model with historical data.
Subsequently, calculate the defined distance between a current pixel and the background. Once the
pixel deviates from the background obviously, a foreground pixel is confirmed. Meanwhile, continue
running the background maintenance to continuously update the background model. These methods
have been widely used for detecting moving objects and they have achieved impressive results.

The robust principal component analysis (RPCA) is a popular method used in background
models [14]. In models using this method, the structure of the video is decomposed into low-rank and
sparse matrices, which provide a suitable framework to separate moving objects from the background.
Bouwmans [15] reviewed various models based on RPCA. Recently, inspired by the impressive
achievement of deep learning, some researchers applied deep neural networks for background
subtraction [16]. Braham and Van Droogenbroeck [17] made use of convolutional neural networks
(CNNs) to deal with the scene-specific problem of background subtraction, naming their model
ConvNet, where the network architecture was inspired by the LeNet-5 network [18]. Their model
consists of four phases: using a time median operation to extract gray background images from multiple
initialization frames, generating the dataset for a specific scene, training the network, and background
subtraction. In ConvNet, input image patches and corresponding background image patches are
fed to the network to predict the probability of foreground pixels. Following this fundamental idea,
Babaee et al. [19] trained a single CNN using various video scenes from the CD2014 dataset [20]
to perform segmentation of the video sequences. Baustita et al. [21] applied a simple CNN for
vehicle detection. Similarly, the input of the CNN is the observed patch image and the corresponding
background patch image. The fully connected layer in the traditional convolutional network is replaced
by the convolutional layer, which reduces the amount of computation and the architecture of fully
convolutional networks (FCNs) can be trained end-to-end. Encouraged by the recent success of transfer
learning and FCNs [22] for semantic segmentation, researchers leveraged FCNs to build background
modeling. Zeng and Zhu [23] proposed a multiscale fully convolutional network architecture which
utilized different layer features for background subtraction. Cinelli [24] varied different features of
the ResNet [25] architectures to optimize them for background or foreground separation by exploring
the advantages of FCNs. Yang et al. [26] also improved FCNs by using three atrous convolution
branches with a different dilate to extract spatial information from different neighborhoods of pixels.
Wang et al. presented a convolutional neural network based on a multiscale cascade [27]. In this
network, a multiscale CNN model with cascade structure is adopted to model the correlation between
adjacent pixels to enhance spatial correlation. The FgSegNet-M20 method [28] is based on a triplet CNN
and a transposed convolutional neural network. This method uses the VGG-16 Net to embed an image
in multiple scales into the feature space, and, in the decoder part, it uses a transposed convolutional
network to learn a mapping from feature space to image space. Subsequent research resulted in the
proposed FgSegNet-S and FgSegNet-V2. Li et al. [29] judged the location of targets in surveillance
scenes using an adaptive deep neural network (ADCNN) method. Zhang et al. [30] designed a deep
learned features based block-wise method with a binary spatiotemporal background model. Zhao et al.
designed a deep pixel distribution learning model (DPDL) for background subtraction [31]. Lim et al.
used an encoder–decoder-structured convolutional neural network for background subtraction [32].
Wang et al. used BGSNet-D to detect moving objects in the scenes where color information was not
available [33]. Yu et al. [34] combined background subtraction and CNN for moving objects detection
in pumping-unit scene.

The aforementioned deep neural network methods have contributed to background subtraction.
However, it is evident that they have encountered several limitations. One limitation, for example,
is that most of the learning algorithms are supervised methods that are merely used to deal with
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scene-specific situations. Therefore, for these methods, many historical video data are needed first
to train the background model, and then the moving object is detected in the new video. Moreover,
the trained model only detects the known targets in the category of the training set, which is an even
more stringent limitation of these methods. When the unknown objects in the category appear in the
current video scene, it produces incorrect judgments. Another limitation is that many of the algorithms
have extremely high computational costs. For example, the deep convolutional neural network is in
high demand as a computing resource, and often includes tens of millions of parameters; therefore,
the computations required to train this network take a great deal of time and money. Some methods
adopt an approach based on patch-wise, a method that segments an image into many patches,
and then convolutes each patch separately. However, this approach generates a lot of redundancy.
Some other methods adopt a fully convolutional network architecture in semantic segmentation for
each pixel. Each pixel is divided into two categories: the foreground and the background. However,
the computation load is still very large. Likewise, the storage space required by CNN is also relatively
large. In comparison, a traditional background subtraction method (BGS) is computed with a lower
computational load. Table 1 shows an overview of these methods.

Table 1. An overview of background subtraction methods.

Categories Methods, Authors Features Learning Types Scene

traditional methods

GMM

hand-crafted unsupervised universal

KDE
ViBe
PBAS

LOBSTER
SuBSENSE

RPCA

CNN-based

ConvNet [17]

learned supervised specific

Babaee [19]
Baustita [21]

Wang [27]
FgSegNet [28]

Li [29]
Zhao [31]
Lim [32]

Wang [33]

Fully CNNs
Zeng [23,35]

learned supervised specificCinelli [24]
Yang [26]

In this paper, a novel framework based on CNN is proposed to improve background subtraction.
In the proposed method, the lower convolution layers are used to extract the general features of a video.
These general features usually have multiple channels, and, in each channel, there is a lot of redundant
information. A few of these channels contain the main information of the image, thus these main
channels are applied to background subtraction, which not only reduces the amount of data processing,
but also removes the redundant interference in the scene. Using a traditional background subtraction
method to process the main features that are extracted by CNN further improves the performance
of the background subtraction method. In comparison to the existing deep neural network methods
of background subtraction, there are three advantages of the proposed method. First, the proposed
method is a general unsupervised method, and there is no need to train models based on the historical
data of specific scenarios. Second, the proposed method requires only a few calculations. Third, only
one of the lower layers of the pretrained CNN is used to extract the general features of videos.

The remainder of this paper is organized as follows. Section 2 presents a detailed account of
the proposed method. Section 3 describes the profound experiments on a dataset of surveillance
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videos that verified the validity and feasibility of the proposed method. Finally, Section 4 provides
some conclusions.

2. The Proposed Method

The outline of the proposed method is illustrated in Figure 1. The input image I is fed into a
pretrained convolution layer to obtain a series of convolution feature images F, and then a few feature
images that are closest to the original image are selected to merge a new convolution feature image Î.
Subsequently, background subtraction methods are used to deal with Î and obtain the foreground
image (FG).
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Figure 1. The framework of the proposed method.

It is well known that CNN has made great achievements in computer vision, image processing,
and other fields. Jason et al. [36] showed that the features learned by the CNN are hierarchical.
Basically, general features, such as color, edge, line, and so on, are extracted from the lower layers of the
neural network. More advanced specific features are extracted from the deep layers; however, these
specific features only present the scene features in the corresponding training set, and they cannot be
used in other scenarios. On the contrary, the lower layers are used to extract the underlying common
features of other scenes. Our framework was based on the VGG16 network [37] architecture trained on
ImageNet. The first convolution layer, conv1_1, of the VGG16 is applied to extract the general features
of the images. The detailed configuration parameters of the conv1_1 layer used in this study are shown
in Table 2. The size of the input image was W × H × 3, where W is the width and H is the height of the
image. The feature images with 64 channels were generated by conv1_1, and therefore the output size
was W × H × 64.

Table 2. Parameter configuration of conv1_1 layer.

Layer Input Size Kernel Stride Padding Output Size

conv1_1 W × H × 3 3 × 3 1 yes W × H × 64

The conv1_1 captured low-level information and retained higher spatial resolution. For example,
the input image I was processed by the convolution layer conv1_1 of the VGG16. Then, the feature
image (F) was obtained.

F = conv(I) (1)

Conv is the convolution operation with a kernel size of 3 × 3 and the stride is 1. F contains 64
convolution feature images, and the resolution of each convolution feature image is the same as the
input image. The feature images are shown in Figure 2. Our observations of these convolution feature
images show that some features take the form of noise-like images, while other features reflect the
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major objects of the input image, such as a canoe and people. Based on these observations, the main
convolution features that best represent the input image are reserved, while other features that have
a low correlation with the input image are abandoned. Consequently, some irrelevant interference
factors are removed from the input image. The performance of the background subtraction method is
further refined by using the reserved convolution features instead of the corresponding input images.
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To reduce the complexity of the computations, the two convolution feature images which have
the strongest correlation with the input image are extracted to merge a new merging image. This new
image is fed into the background subtraction method and replaces the input image. To evaluate the
correlation strength between the convolution feature image and the input image, the value of the
peak signal-to-noise ratio (PSNR) is calculated for the convolution feature image and the input image.
The higher is the PSNR value, the stronger is the correlation between the convolution image and the
input image.

PSNR = 10 · log10

MAX2
I

MSE

 (2)

where MAXI is the maximum pixel value of the input image and the data in this study are in the range
of 0–1. MAXI is 1, and MSE is the mean square error between the grayscale of input image I and the
convolution feature Fk.

MSE =
1

HW

H∑
i=1

w∑
j=1

‖I(i, j) − Fk(i, j)‖2 (3)

where H and W are the height and width of the image, respectively; and k = 1, 2, . . . , 64 denotes the
number of the convolution image.
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The two feature images with the maximum values of PSNR are shown in Figure 3. The indices are
the 32nd and 26th in Figure 2, respectively. In the same scene, the feature distributions extracted by the
convolution layer for different video frames are the same. The ranking of the PSNR values which are
obtained from one input frame are used as the indices of the convolution feature of the subsequent
frames. Therefore, the indices of the two features with maximal PSNR only need to be computed once.
Two convolution feature images of the maximum PSNR value are merged into a new image and the
formula is as follows:

Î =
F̂−min(F̂)

max(F̂) −min(F̂)
(4)

where F̂ = Fmax + Fsec, and Fmax and Fsec are the two feature images with the maximum values of PSNR.
Obviously, Î is normalized to a range 0–1.
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Once the synthetic image is obtained, the foreground binary image (FG) is finally obtained by the
traditional background subtraction method.

FG(i, j) =

 1, i f BGS
(
Î(i, j)

)
is f oreground

0, i f BGS
(
Î(i, j)

)
is background

(5)

where i and j are the position coordinates of the pixels; i = 1, 2, . . . , H; j = 1, 2, . . . , W; and BGS is a
background subtraction method.

Algorithm 1 depicts the overall procedure of the proposed method.

Algorithm 1: The proposed method.

Input:
It: input image of video, t = 1, 2, . . . , L, L is the frame number of the video;
Output:
FG: the foreground of the input image.
F← conv(I1) .
Calculate the PSNR values between F and the grayscale image of I1.
Find the numbers indmax of Fmax and indsec of Fsec.
t← 2
While t ≤ L Do
F← conv(It)

Fmax = F(indmax) and Fsec = F(indsec)

Calculate Î using (4)
Obtain the foreground image FG using Equation (5)

t← t + 1

End While
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3. Experiments

To verify the performance of the proposed method, the dynamic background videos from
CDnet [20] were used to test the method. The CDnet is an expanded change detection benchmark
dataset, which provides a realistic, diverse set of videos and covers a wide range of detection challenges.
The main advantage of this dataset is that it provides the ground truths for all video frames. Therefore,
the dataset can be used to quantitatively evaluate the performance of various background subtraction
methods and rank them. The category of dynamic background contains six videos depicting outdoor
scenes with strong background motion. The details of this category are presented in Table 3.

Table 3. Dynamic background videos.

Videos Size Number of Frames Dynamic Scenes

Boats 320 × 240 7999 water rippling
Canoe 320 × 240 1189 water rippling

Fountain01 432 × 288 1184 fountains
Fountain02 432 × 288 1499 fountains
Overpass 320 × 240 3000 waving trees

Fall 720 × 480 4000 waving trees

The performance of the background modeling methods was evaluated at the pixel level.
The background modeling methods classified pixels into foreground or background. The following six
metrics were used to evaluate the performance of the background modeling methods:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

FPR =
FP

FP + TN

FNR =
FN

TP + FN

PWC = 100×
FN + FP

TP + FN + FP + TN

F−measure = 2×
Precision×Recall
Precision + Recall

where TP is the number of correctly detected foreground pixels, TN is the number of correctly detected
background pixels, FP is the number of background pixels that are incorrectly marked as the foreground
pixel, and FN is the number of foreground pixels that are incorrectly marked as the background pixels.
F-measure is the comprehensive evaluation index which represents the weighted harmonic mean and
ranges between 0 and 1. Obviously, the higher are recall, precision and F-measure, the better is the
performance, while the lower are FPR, FNR, and PWC, the better is the performance.

We applied the proposed framework to the following traditional background modeling methods:
GMM, SuBSENSE, PBAS, KDE, LOBSTER, and ViBe. Details for the implementation of these traditional
methods are available in the BGSlibrary [38], and, consequently, these implementations were used
in this study. Figure 4 presents the refinements of the traditional background subtraction methods
using the proposed method for foreground detection in dynamic scenes. It is noteworthy that the
convolution feature methods (BGScon) further suppressed the disturbance of dynamic background
such as branch swaying, water ripple, and so on as compared with the corresponding background
subtraction methods (BGS).
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Comparisons of the performance between these background subtraction methods (BGS) and the
corresponding convolution feature methods (BGScon) are shown in Table 4 and illustrates that the
convolution feature framework improves the performance of background subtraction methods to
some extent.

Table 4. Comparisons between BGS and BGScon by the proposed method.

Category Methods Recall FPR FNR PBC Precision F-Measure

dynamic background

GMM 0.7568 0.0440 0.2432 4.7859 0.2109 0.3062
GMMcon 0.7683 0.0232 0.2317 2.7252 0.3484 0.4338

SuBSENSE 0.7713 0.0006 0.2287 0.4084 0.8915 0.8132
SuBSENSEcon 0.8228 0.0017 0.1772 0.3645 0.8228 0.8138

PBAS 0.5634 0.0005 0.4366 0.7252 0.8787 0.6154
PBAScon 0.6095 0.0005 0.3905 0.5800 0.8848 0.6712

KDE 0.8562 0.0788 0.1438 7.8212 0.1062 0.1855
KDEcon 0.4765 0.0041 0.5235 0.9584 0.5691 0.4884

LOBSTER 0.7646 0.0189 0.2354 2.0795 0.5948 0.5682
LOBSTERcon 0.6572 0.0047 0.3428 0.7922 0.7411 0.6367

ViBe 0.5852 0.0100 0.4148 1.3884 0.4521 0.4733
ViBecon 0.6020 0.0047 0.3980 0.8203 0.6237 0.5739

To show the refinements of the traditional background subtraction methods by the proposed
framework intuitively, the average values and standard deviations for F-measure, which are general
international standards for binary classification, are presented in Figure 5. In the figure, the blue
bars are the F-measure values of traditional background modeling methods while the red bars are
the corresponding F-measure values of the convolution feature methods. The KDE method had the
highest performance improvement, with an increase of more than 160%. GMM’s performance was
improved by 42%, ViBe by 21%, LOBSTER by 12%, PBAS by 9%, and SuBSENSE by 0.1%. SuBSENSE,
which is a state-of-the-art BGS method, had very high performance and surpassed most of the other
unsupervised BGS methods. When the proposed method was applied, the performances of other
background subtraction methods, with the exception of SuBSENSE, improved significantly.
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To verify the ability of the proposed method, Neural Response Mixture (NeRM) [39] was selected
for comparison. NeRM takes advantage of rich deep features extracted from the neural responses of
an efficient, stochastically-formed deep neural network for constructing Gaussian mixture models to
detect motion in a scene. Table 5 shows the improvement ratio of GMM by NeRM and the proposed
method respectively, in which the higher the ratio, the better the performance. The most representative
F-measure evaluation metric of the proposed method is better.

Table 5. Comparisons of improvement ratio of GMM.

Methods Recall FPR FNR PBC Precision F-Measure

NeRM [39] 50.0% 80.0% −21.9% 74.5% 32.4% 40.0%
Proposed 1.5% 47.3% 4.7% 43.1% 65.2% 41.7%

For further evaluating the performance of the proposed method, shadow videos are used to test.
Shadow is composed of six videos with both strong and soft moving and cast shadows [20]. Table 6
shows the details of this category. The refinement results are illustrated in Figure 6. Table 7 lists
the quantitative comparison results. As shown in Table 7, GMM, KDE, PBAS, LOBSTER and ViBe
methods were refined in a certain degree. Since SuBSENSE had high performance, this method was
not improved.

Table 6. Shadow videos.

Videos Size Number of Frames Dynamic Scenes

backdoor 320 × 240 2000

Shadow and illumination change

bungalows 360 × 240 1700
busStation 360 × 240 1250

copyMachine 720 × 480 3400
cubicle 352 × 240 7400

peopleInShade 380 × 244 1199
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Table 7. Comparisons between BGS and BGScon by the proposed method.

Category Methods Recall FPR FNR PBC Precision F-Measure

shadow

GMM 0.7020 0.0124 0.2980 2.6666 0.7128 0.6862
GMMcon 0.7190 0.0127 0.2810 2.7459 0.7497 0.7240

SuBSENSE 0.9469 0.0081 0.0531 0.9960 0.8627 0.8998
SuBSENSEcon 0.9091 0.0085 0.0909 1.1977 0.8661 0.8850

PBAS 0.6917 0.0076 0.3083 2.1497 0.8487 0.7455
PBAScon 0.7189 0.0079 0.2811 2.2203 0.8655 0.7729

KDE 0.9269 0.0757 0.0731 7.6690 0.3913 0.5176
KDEcon 0.6899 0.0122 0.3101 2.5481 0.7901 0.7275

LOBSTER 0.8038 0.0063 0.1962 1.4937 0.9008 0.8452
LOBSTERcon 0.8773 0.0070 0.1227 1.1703 0.8739 0.8709

ViBe 0.6600 0.0064 0.3400 2.0278 0.8622 0.7397
ViBecon 0.6944 0.0062 0.3056 1.9924 0.8877 0.7746

Since the PSNR is simple and easy to realize, it was adopted to determine the feature images
involved in the proposed method in our experiments. Structural similarity index measure (SSIM) is
another well-known objective image quality metric. A simple analytical link exists between the PSNR
and the SSIM and the PSNR is more sensitive to Gaussian noise than the SSIM [40]. The SSIM used to
choose the convolution feature images was evaluated in the experiment as PSNR. Table 8 shows the
comparison results. As can been observed, the PSNR metric was better than the SSIM.

The input images of dynamic scenes usually contain a large amount of redundant information that
results in deterioration of background modeling performance while the original images of a video are
used to model the background. The convolution of CNN, which was pretrained on ImageNet, extracted
the underlying features of the input image. The dynamic redundancy features were abandoned, and the
main features were merged into a new input image. On the basis of the new image, the background
model, which was built by the BGS method, had better performance. In the proposed framework,
only one lower layer convolution of CNN was used. Compared with a whole CNN network, which is
often hundreds of megabytes in size, one convolution layer is only several megabytes. Therefore,
the performance of the traditional background subtraction method is further improved without
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increasing computational load. As an example, for an input image of 320 × 240 in size, the memory
required to extract the convolution feature from the input image by applying the conv1_1 layer of the
VGG16 is 320 × 240 × 64 = 4.9 M, and the weight is 3 × 3 × 3 × 64 = 1728.

Table 8. Comparisons of PSNR and SSIM for GMM on dynamic scenes.

Videos Methods Recall FPR FNR PBC Precision F-Measure

boats GMM 0.5418 0.0627 0.4582 6.5735 0.0635 0.1136
GMMPSNR 0.5563 0.0264 0.4437 2.9650 0.1417 0.2259
GMMSSIM 0.3483 0.0272 0.6517 3.1088 0.0749 0.1232

canoe GMM 0.5762 0.0673 0.4238 8.2353 0.2734 0.3708
GMMPSNR 0.6212 0.0261 0.3788 4.1436 0.5190 0.5655
GMMSSIM 0.4163 0.0474 0.5837 6.6359 0.2439 0.3076

fall GMM 0.8427 0.0830 0.1573 8.4436 0.1638 0.2744
GMMPSNR 0.8513 0.0553 0.1487 5.7039 0.2306 0.3629
GMMSSIM 0.7391 0.0482 0.2609 5.1936 0.2168 0.3352

fountain01 GMM 0.8934 0.0274 0.1066 2.7464 0.0375 0.0721
GMMPSNR 0.9096 0.0211 0.0904 2.1222 0.0506 0.0958
GMMSSIM 0.7835 0.0168 0.2165 1.7016 0.0372 0.0710

fountain02 GMM 0.9162 0.0058 0.0838 0.6076 0.3173 0.4713
GMMPSNR 0.9031 0.0026 0.0969 0.2856 0.5251 0.6641
GMMSSIM 0.7211 0.0021 0.2789 0.2732 0.4212 0.5318

overpass GMM 0.7704 0.0178 0.2296 2.1093 0.4100 0.5352
GMMPSNR 0.7686 0.0077 0.2314 1.1307 0.6237 0.6886
GMMSSIM 0.4666 0.0108 0.5334 1.7817 0.3694 0.4124

4. Conclusions

In this paper, we present an unsupervised, simple and universal framework that takes advantage
of lower layer features of pretrained CNN for refinements of dynamic background subtraction methods.
The framework extracts the low-level features of input images and merges the representation features
of the input image into a new feature image. The background subtraction methods produce more
accurate foreground object detection results by modeling the key features. To verify the performance
of the proposed method, the dynamic background database was used to carry out experiments.
Experiments showed that the proposed method significantly refined the traditional background
subtraction methods for dynamic scenes.
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