From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz
Abstract
:1. Introduction
2. Background
The Original Quantum Approximate Optimization Algorithm
- The phase Hamiltonian encodes the cost function f to be optimized, i.e., acts diagonally on n-qubit computational basis states as:
- The mixing Hamiltonian is the transverse field Hamiltonian:
- The initial state is selected to be the equal superposition state of all possible solutions:
- A parameterized quantum state is created by alternately applying Hamiltonians and for p rounds, where the duration in round j is specified by the parameters and , respectively:
- A computational basis measurement is performed on the state, which returns a candidate solution with probability Repeating the above state preparation and measurement, the expected value of the cost function over the returned solution samples is given by:
- The above steps may then be repeated altogether, with updated sets of time parameters, as part of a classical optimization loop (such as gradient descent or other approaches) used to optimize the algorithm parameters with respect to an objective such as .
- The best problem solution found overall is returned.
3. The Quantum Alternating Operator Ansatz (QAOA)
- A family of phase-separation operators that depends on the objective function f, and;
- A family of mixing operators that depends on the domain and its structure,
3.1. Design Criteria
- Preserve the feasible subspace: For all values of the parameter , the resulting unitary takes feasible states to feasible states, and;
- Provide transitions between all pairs of states corresponding to feasible points. More concretely, for any pair of feasible computational-basis states , there is some parameter value and some positive integer r such that the corresponding mixer connects those two states: .
4. QAOA Mappings: Strings
4.1. Example: Max--ColorableSubgraph
4.1.1. Single Qudit Mixing Operators
4.1.2. Full QAOA Mapping
4.2. Example: MaxIndependentSet
4.2.1. Partial Mixing Operator at Each Vertex
4.2.2. Full QAOA Mapping
- The simultaneous controlled-X mixer, , and;
- A class of partitioned controlled- mixers, ,
4.3. Example: MaxColorableInducedSubgraph
4.3.1. Controlled Null-Swap Mixer at a Vertex
4.3.2. Full QAOA Mapping
- The simultaneous controlled null-swap mixer, , and;
- A family of partitioned controlled null-swap mixers, .
4.4. Example: MinGraphColoring
4.4.1. Partial Mixer at a Vertex
4.4.2. Full QAOA Mapping
- The simultaneous controlled-swap mixer:
- A family of partitioned controlled-swap mixers:
4.4.3. Compilation in One-Hot Encoding
5. QAOA Mappings: Orderings and Schedules
5.1. Example: Traveling Salesperson Problem (TSP)
5.1.1. Mapping
5.1.2. Compilation
5.2. Example: Single Machine Scheduling (SMS), Minimizing Total Squared Tardiness
5.3. SMS, Minimizing Total Tardiness
5.3.1. Encoding and Mixer
5.3.2. Mapping and Compilation
5.4. SMS, with Release Dates
5.4.1. Partial Mixer: Controlled Null-Swap Mixer
5.4.2. Encoding and Compilation
5.4.3. Mapping Variants
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Compendium of Mappings and Compilations
Appendix A.1. Bit-Flip (X) Mixers
Appendix A.1.1. Maximum Cut
Appendix A.1.2. Max-ℓ-SAT
Appendix A.1.3. Min-ℓ-SAT
Appendix A.1.4. Max-Not-All-Equal-ℓ-SAT (NAE-ℓ-SAT)
Appendix A.1.5. Set Splitting
Appendix A.1.6. E3Lin2
Appendix A.2. Controlled-Bit-Flip (Λf(X)) Mixers
Appendix A.2.1. MaxIndependentSet [Section 4.2]
- Controlled-bit-flip mixers:n multiqubit-controlled- gates, each with at most controls (exactly controls for each vertex). Depth at most n but will be much less for sparsely connected graphs.
- Phase separator:n single-qubit Z-rotations. Depth 1.
Appendix A.2.2. MaxClique
Appendix A.2.3. MinVertexCover
Appendix A.2.4. MaxSetPacking
- Controlled-bit-flip mixers: Each partial mixer is implemented as a controlled- gate with control qubits. Partial mixer depth at most m.
- Phase separator:m single-qubit Z-rotations. Depth 1.
- Initial state: Depth 0.
Appendix A.2.5. MinSetCover
- Controlled-bit-flip mixers: For each , use ancilla qubits. Use each ancilla qubit i to compute using a controlled NOT gate with control qubits. Then implement using a controlled X gate on qubit j with the ancilla qubits as the control. Finally, uncompute the ancilla qubits using the same controlled NOT gates as in the first step. Depth at most per partial mixer.
- Phase separator:m single-qubit Z-rotations. Depth 1.
- Initial state: Depth 0.
Appendix A.3. XY Mixers
Appendix A.3.1. Max-κ-ColorableSubgraph [Section 4.1]
- Phase Separator:
- Resource count:
- -
- Number of qubits:.
- -
- Parity ring mixer: two-qubit () gates, with depth at most 2 ( even) or 3 ( odd).
- -
- Phase separator: two-qubit () gates. Depth at most .
- -
- Initial state:n single-qubit X gates. Depth 1.
- Phase separator:
- Mixer: where adds z to the register i encoding an integer in binary.
- Resource count:
- -
- Parity ring mixer:s, single-qubit rotations; completely parallelizable.
- -
- Phase separator:m controlled-phase gates with controls; depth .
- -
- Initial state:n single-qubit X gates in depth 1.
Appendix A.3.2. Graph Partitioning (Minimum Bisection)
- Number of qubits:n.
- Parity ring mixer:n two-qubit (XX+YY) gates, with depth at most 2 (n even) or 3 (n odd).
- Phase separator:m two-qubit (ZZ) gates. Depth at most .
- Initial state: single-qubit X gates. Depth 1.
Appendix A.3.3. Maximum Bisection
Appendix A.3.4. Maximum Vertex κ-Cover
Appendix A.4. Controlled-XY Mixers
Appendix A.4.1. Max-κ-ColorableInducedSubgraph [Section 4.3]
- Partitioned controlled null-swap mixers: partial mixers, each acting on at most qubits. Depth at most but will be much less for sparsely connected graphs.
- Phase separator:n single-qubit Z-rotations. Depth 1.
- Initial state:, implemented in depth 1 with n X gates.
Appendix A.4.2. MinGraphColoring [Section 4.4]
- Partitioned controlled-swap mixers: controlled gates on no more than qubits.
- Phase separator: partial phase separators acting on qubits, one target qubit and n control qubits. Depth 2 in partial phase separators, or depth 1 with the addition of ancilla qubits.
- Initial state: Any valid coloring (can be efficiently computed classically). Can be implemented in depth 1 using n single-qubit X gates.
Appendix A.4.3. MinCliqueCover
Appendix A.5. Permutation Mixers
Appendix A.5.1. TravelingSalespersonProblem (TSP) [Section 5.1]
- Phase separator:.
- Partial mixer:, where is given in Equation (55).
- Color-parity permutation swap mixer (Section 5.1): At most 4-qubit partial mixers, in depth at most .
- Phase separator: mutually commuting two-qubit gates. Depth no more than .
- Initial state:n single-qubit X gates. Depth 1.
Appendix A.5.2. SMS, Minimizing Total Weighted Squared Tardiness [Section 5.2]
- Phase separator: The encoded phase separator is a 3-local Hamiltonian containing
- -
- all 1-local terms;
- -
- all 2-local terms of two computational qubits corresponding to different jobs at different places in the ordering, all 2-local terms of two ancilla qubits corresponding to the same job, and all 2-local terms of one computational qubit and one ancilla qubit except when they correspond to different jobs and the computational qubit corresponds to that job being last in the ordering;
- -
- all 3-local terms of three computational qubits corresponding to different jobs at different places in the ordering and all 3-local terms containing two computational qubits corresponding to different jobs at different places in the ordering and one ancilla qubit corresponding to the later job.
- Partial mixer:.
- Initial state Arbitrary ordering.
- Color-parity permutation swap mixer (Section 5.1): At most 4-qubit partial mixers, in depth at most . Single-qubit X mixer for slack binary variables can be done in parallel with the permutation swap mixer.
- Phase separator: Let be the number of bits needed for the slack variable , and .
- -
- Number of 1-local gates: .
- -
- Number of 2-local gates: .
- -
- Number of 3-local gates: .
- Initial state:n single-qubit X gates. Depth 1.
Appendix A.5.3. SMS, Minimizing Total Weighted Tardiness [Section 5.3]
- Phase separator:
- Partial mixer:.
- Color–time partitioned time-swap mixer: 4-qubit gates in depth .
- Phase separator: At most single-qubit gates, depth 1.
- Initial state:n single-qubit X gates, depth 1.
Appendix A.5.4. SMS, with Release Dates [Section 5.4]
- Partial mixer:
- Phase separator (for min weighted total tardiness): See Equation (77).
- Controlled null-swap mixer: SMS-instance dependent, see discussion in Section 5.4.
- Phase separator (for min weighted total tardiness): At most single-qubit Z gates. Depth 1.
- Initial state:n single-qubit X gates. Depth 1.
Appendix B. Glossary of Mapping Terms
Appendix B.1. Mixers
Appendix B.1.1. Partial Mixing Hamiltonians
- r-nearby-values mixer: . The special cases of and are called the “ring mixer” and “fully-connected mixer”, respectively.
- simple binary mixer: When is a power of two:
- null-swap mixer: For cases when one of the d values corresponds to a “null” value (e.g., black or uncolored in graph coloring), .
- Value-selective permutation swap mixer: Swaps the ith and jth elements in the ordering if those elements are u and v, see Equation (46) in Section 5.1.
- Value-independent permutation swap mixer: Swaps the ith and jth elements of the ordering regardless of which items those are, see Equation (48) in Section 5.1.
- Controlled null-swap mixer:
- -
- Section 4.3 for MaxColorableInducedSubgraph, Equation (27).
- -
- Section 5.4 for SMS with release dates, Equation (73).
- Controlled-SWAP mixer: Section 4.4 for MinGraphColoring, Equation (34).
Appendix B.1.2. Partitions
- Parity-mixer: For Hamiltonian terms of type , where and and are operators acting on qubit u and , respectively. Partition the index set into even and odd subsets. See Section 4.1 for details.
- Color-mixer: For index pairs , let be an ordered partition of the indices into parts such that each part contains only mutually disjoint pairs of indices from . This is equivalent to considering a -edge-coloring of the complete graph , and assigning an ordering to the colors, so we call the “color partition”. For even n, suffices, and for odd n, . See Section 5.1 for its use.
Appendix B.2. Encodings
- One-hot encoding: The qudit basis states , , are encoded as the d-qubit states . See Section 4.1.1
- Binary encoding: Each qudit basis state is encoded as the ℓ-qubit basis state , where denotes the binary representation of a, and . See Section 4.1.1.A generalization of the binary encoding is radix encoding, which represents a in base-r, with positive integer r. While the binary encoding is convenient for qubits, and is hence appealing in terms of implementability, it is plausible that for some problems, a more general radix encoding could be a natural choice.
- Direct encoding: An ordering is encoded directly as a string of integers. It is demonstrated for TSP and SMS in Section 5.1 and Section 5.2, respectively.
- Absolute encoding: To encode the ordering , we assigned each item i a value , where the “horizon” h is a parameter of the encodings, such that for all , . It is demonstrated for SMS in Section 5.3.
- Direct one-hot encoding, see Section 5.1.
- Absolute one-hot encoding, see Section 5.3.
Appendix C. Elementary Operators
Appendix C.1. SWAP and XY Opertors
- In the subspace spanned by , and behave identically.
- In the subspace , acts as null while acts as an identity.
- The operators and are both Hermitian. is unitary.
- Applied to a multiqubit system, Hamiltonians of the form or , where either sum may be taken over arbitrary subsets of indices, each preserve the Hamming weight of computational basis states; hence, so do the corresponding unitaries and . Although the two operators do not behave identically on the full Hilbert space, they can both serve as mixers in situations in which Hamming weight is the relevant constraint.
- To enforce simultaneous swaps of multiple qubit pairs, in Hamiltonians such as , each cannot in general be directly replaced by due to the second item above. See the TSP problem in Section 5.1 as an example.
Appendix C.2. Generalized Pauli Gates for Qudits
References
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv. 2014. Available online: https://arxiv.org/abs/1411.4028 (accessed on 11 February 2019).
- Biswas, R.; Jiang, Z.; Kechezhi, K.; Knysh, S.; Mandrà, S.; O’Gorman, B.; Perdomo-Ortiz, A.; Petukhov, A.; Realpe-Gómez, J.; Rieffel, E.; et al. A NASA perspective on quantum computing: Opportunities and challenges. Parallel Comput. 2017, 64, 81–98. [Google Scholar] [CrossRef]
- Rieffel, E.G.; Venturelli, D.; O’Gorman, B.; Do, M.B.; Prystay, E.M.; Smelyanskiy, V.N. A case study in programming a quantum annealer for hard operational planning problems. Quant. Inform. Process. 2015, 14, 1–36. [Google Scholar] [CrossRef]
- Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [Google Scholar] [CrossRef]
- Hadfield, S. On the representation of Boolean and real functions as Hamiltonians for quantum computing. arXiv. 2018. Available online: https://arxiv.org/pdf/1804.09130.pdf (accessed on 11 February 2019).
- Hen, I.; Spedalieri, F.M. Quantum annealing for constrained optimization. Phys. Rev. Appl. 2016, 5, 034007. [Google Scholar] [CrossRef]
- Hen, I.; Sarandy, M.S. Driver Hamiltonians for constrained optimization in quantum annealing. Phys. Rev. 2016, 93, 062312. [Google Scholar] [CrossRef]
- Rieffel, E.G.; Polak, W. Quantum Computing: A Gentle Introduction; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- IBM. IBM Q and Quantum Computing. Available online: https://www.research.ibm.com/ibm-q/ (accessed on 1 September 2017).
- Boixo, S.; Smelyanskiy, V.N.; Shabani, A.; Isakov, S.V.; Dykman, M.; Denchev, V.S.; Amin, M.H.; Smirnov, A.Y.; Mohseni, M.; Neven, H. Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 2016, 7, 10327. [Google Scholar] [CrossRef] [PubMed]
- Sete, E.A.; Zeng, W.J.; Rigetti, C.T. A functional architecture for scalable quantum computing. In Proceedings of the 2016 IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, USA, 17–19 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Mohseni, M.; Read, P.; Neven, H.; Boixo, S.; Denchev, V.; Babbush, R.; Fowler, A.; Smelyanskiy, V.; Martinis, J. Commercialize quantum technologies in five years. Nature 2017, 543, 171–174. [Google Scholar] [CrossRef]
- Debnath, S.; Linke, N.; Figgatt, C.; Landsman, K.; Wright, K.; Monroe, C. Demonstration of a small programmable quantum computer with atomic qubits. Nature 2016, 536, 63–66. [Google Scholar] [CrossRef]
- Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B Atom. Mol. Opt. Phys. 2016, 49, 202001. [Google Scholar] [CrossRef]
- Zahedinejad, E.; Zaribafiyan, A. Combinatorial optimization on gate model quantum computers: A survey. arXiv. 2017. Available online: https://arxiv.org/pdf/1708.05294.pdf (accessed on 11 February 2019).
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. arXiv. 2014. Available online: https://arxiv.org/pdf/1412.6062.pdf (accessed on 11 February 2019).
- Farhi, E.; Harrow, A.W. Quantum supremacy through the quantum approximate optimization algorithm. arXiv. 2016. Available online: https://arxiv.org/pdf/1602.07674.pdf (accessed on 11 February 2019).
- Yang, Z.C.; Rahmani, A.; Shabani, A.; Neven, H.; Chamon, C. Optimizing variational quantum algorithms using Pontryagin’s minimum principle. Phys. Rev. X 2017, 7, 021027. [Google Scholar] [CrossRef]
- Jiang, Z.; Rieffel, E.G.; Wang, Z. Near-optimal quantum circuit for Grover’s unstructured search using a transverse field. Phys. Rev. A 2017, 95, 062317. [Google Scholar] [CrossRef]
- Wecker, D.; Hastings, M.B.; Troyer, M. Training a quantum optimizer. Phys. Rev. A 2016, 94, 022309. [Google Scholar] [CrossRef]
- Wang, Z.; Hadfield, S.; Jiang, Z.; Rieffel, E.G. Quantum approximate optimization algorithm for MaxCut: A fermionic view. Phys. Rev. A 2018, 97, 022304. [Google Scholar] [CrossRef]
- Venturelli, D.; Do, M.; Rieffel, E.; Frank, J. Compiling quantum circuits to realistic hardware architectures using temporal planners. Quantum Sci. Tech. 2018, 3, 025004. [Google Scholar] [CrossRef]
- Barak, B.; Moitra, A.; O’Donnell, R.; Raghavendra, P.; Regev, O.; Steurer, D.; Trevisan, L.; Vijayaraghavan, A.; Witmer, D.; Wright, J. Beating the random assignment on constraint satisfaction problems of bounded degree. arXiv. 2015. Available online: https://arxiv.org/pdf/1505.03424.pdf (accessed on 11 February 2019).
- Hadfield, S.; Wang, Z.; Rieffel, E.G.; O’Gorman, B.; Venturelli, D.; Biswas, R. Quantum Approximate Optimization with Hard and Soft Constraints. In Proceedings of the Second International Workshop on Post Moores Era Supercomputing, Denver, CO, USA, 12–17 November 2017; ACM: New York, NY, USA, 2017; pp. 15–21. [Google Scholar]
- Fingerhuth, M.; Babej, T.; Ing, C. A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding. arXiv. 2018. Available online: https://arxiv.org/pdf/1810.13411.pdf (accessed on 11 February 2019).
- Farhi, E.; Goldstone, J.; Gutmann, S.; Neven, H. Quantum algorithms for fixed qubit architectures. arXiv. 2017. Available online: https://arxiv.org/pdf/1703.06199.pdf (accessed on 11 February 2019).
- Lechner, W. Quantum approximate optimization with parallelizable gates. arXiv. 2018. Available online: https://arxiv.org/pdf/1802.01157.pdf (accessed on 11 February 2019).
- Ho, W.W.; Hsieh, T.H. Efficient preparation of non-trivial quantum states using the quantum approximate optimization algorithm. arXiv. 2019. Available online: https://arxiv.org/pdf/1803.00026.pdf (accessed on 11 February 2019).
- Verdon, G.; Broughton, M.; Biamonte, J. A quantum algorithm to train neural networks using low-depth circuits. arXiv. 2017. Available online: https://arxiv.org/pdf/1712.05304.pdf (accessed on 11 February 2019).
- Otterbach, J.; Manenti, R.; Alidoust, N.; Bestwick, A.; Block, M.; Bloom, B.; Caldwell, S.; Didier, N.; Fried, E.S.; Hong, S.; et al. Unsupervised machine learning on a hybrid quantum computer. arXiv. 2017. Available online: https://arxiv.org/pdf/1712.05771.pdf (accessed on 11 February 2019).
- Marsh, S.; Wang, J. A quantum walk-assisted approximate algorithm for bounded NP optimisation problems. Quant. Inform. Process. 2019, 18, 61. [Google Scholar] [CrossRef]
- Lloyd, S. Quantum approximate optimization is computationally universal. arXiv. 2018. Available online: https://arxiv.org/pdf/1812.11075.pdf (accessed on 11 February 2019).
- Guerreschi, G.G.; Smelyanskiy, M. Practical optimization for hybrid quantum-classical algorithms. arXiv. 2017. Available online: https://arxiv.org/pdf/1701.01450.pdf (accessed on 11 February 2019).
- McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training landscapes. arXiv. 2018. Available online: https://arxiv.org/pdf/1803.11173.pdf (accessed on 11 February 2019).
- Booth, K.E.C.; Do, M.; Beck, J.C.; Rieffel, E.; Venturelli, D.; Frank, J. Comparing and integrating constraint programming and temporal planning for quantum circuit compilation. arXiv. 2018. Available online: https://arxiv.org/pdf/1803.06775.pdf (accessed on 11 February 2019).
- Gottesman, D.; Kitaev, A.; Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 2001, 64, 012310. [Google Scholar] [CrossRef]
- Bartlett, S.D.; de Guise, H.; Sanders, B.C. Quantum encodings in spin systems and harmonic oscillators. Phys. Rev. A 2002, 65, 052316. [Google Scholar] [CrossRef]
- Verstraete, F.; Cirac, J.I.; Latorre, J.I. Quantum circuits for strongly correlated quantum systems. Phys. Rev. A 2009, 79, 032316. [Google Scholar] [CrossRef]
- Chow, J.M. Quantum Information Processing with Superconducting Qubits. Ph.D. Thesis, Yale University, London, UK, 2010. [Google Scholar]
- Soifer, A. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators; Springer: Berlin, Germany, 2008. [Google Scholar]
- Zuckerman, D. On unapproximable versions of NP-complete problems. SIAM J. Comput. 1996, 25, 1293–1304. [Google Scholar] [CrossRef]
- Papadimitriou, C.H. Computational Complexity; John Wiley and Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Yato, T.; Seta, T. Complexity and completeness of finding another solution and its application to puzzles. IEICE Trans. Fund. Electron. Commun. Comput. Sci. 2003, 86, 1052–1060. [Google Scholar]
- Ueda, N.; Nagao, T. NP-Completeness Results for NONOGRAM via Parsimonious Reductions. Available online: https://pdfs.semanticscholar.org/1bb2/3460c7f0462d95832bb876ec2ee0e5bc46cf.pdf (accessed on 30 August 2017).
- Bremner, M.J.; Jozsa, R.; Shepherd, D.J. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. Lond. Math. Phys. Sci. 2010, 467. [Google Scholar] [CrossRef]
- Li, G.; Ding, Y.; Xie, Y. Tackling the qubit mapping problem for NISQ-Era quantum devices. arXiv. 2018. Available online: https://arxiv.org/pdf/1809.02573.pdf (accessed on 11 February 2019).
- Bremner, M.J.; Montanaro, A.; Shepherd, D.J. Average-case complexity versus approximate simulation of commuting quantum computations. Phys. Rev. Lett. 2016, 117, 080501. [Google Scholar] [CrossRef] [PubMed]
- Bremner, M.J.; Montanaro, A.; Shepherd, D.J. Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum 2017, 1, 8. [Google Scholar] [CrossRef]
- Trevisan, L. Inapproximability of combinatorial optimization problems. In Paradigms of Combinatorial Optimization, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2014; pp. 381–434. [Google Scholar]
- Ausiello, G.; Crescenzi, P.; Gambosi, G.; Kann, V.; Marchetti-Spaccamela, A.; Protasi, M. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties; Springer: Berlin, Germany, 2012. [Google Scholar]
- Papadimitriou, C.; Yannakakis, M. Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 1991, 43, 425–440. [Google Scholar] [CrossRef]
- Khanna, S.; Motwani, R.; Sudan, M.; Vazirani, U. On syntactic versus computational views of approximability. SIAM J. Comput. 1998, 28, 164–191. [Google Scholar] [CrossRef]
- Håstad, J. Some optimal inapproximability results. J. ACM 2001, 48, 798–859. [Google Scholar] [CrossRef]
- Goemans, M.X.; Williamson, D.P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 1995, 42, 1115–1145. [Google Scholar] [CrossRef]
- Khot, S.; Kindler, G.; Mossel, E.; O’Donnell, R. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 2007, 37, 319–357. [Google Scholar] [CrossRef]
- Feige, U.; Karpinski, M.; Langberg, M. Improved approximation of Max-Cut on graphs of bounded degree. J. Algorithms 2002, 43, 201–219. [Google Scholar] [CrossRef]
- Lewin, M.; Livnat, D.; Zwick, U. Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems. In Proceedings of the International Conference on Integer Programming and Combinatorial Optimization, Cambridge, MA, USA, 27–29 May 2002; Springer: Berlin, Germany, 2002; pp. 67–82. [Google Scholar]
- Karloff, H.; Zwick, U. A 7/8-approximation algorithm for MAX 3SAT? In Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach, FL, USA, 20–22 October 1997; pp. 406–415. [Google Scholar] [CrossRef]
- Kohli, R.; Krishnamurti, R.; Mirchandani, P. The minimum satisfiability problem. SIAM J. Discrete Math. 1994, 7, 275–283. [Google Scholar] [CrossRef]
- Dinur, I.; Safra, S. The importance of being biased. In Proceedings of the 34th Annual ACM Symposium on the Theory of Computing, Montreal, ON, Canada, 19–21 May 2002; pp. 33–42. [Google Scholar]
- Avidor, A.; Zwick, U. Approximating MIN 2-SAT and MIN 3-SAT. Theor. Comput. Syst. 2005, 38, 329–345. [Google Scholar] [CrossRef]
- Bertsimas, D.; Teo, C.; Vohra, R. On dependent randomized rounding algorithms. Oper. Res. Lett. 1999, 24, 105–114. [Google Scholar] [CrossRef]
- Andersson, G.; Engebretsen, L. Better approximation algorithms for set splitting and Not-All-Equal SAT. Inform. Process. Lett. 1998, 65, 305–311. [Google Scholar] [CrossRef]
- Zwick, U. Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, 25–27 January 1998; pp. 201–210. [Google Scholar]
- Petrank, E. The hardness of approximation: Gap location. Comput. Complex. 1994, 4, 133–157. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Y.; Han, Q. Improved approximations for max set splitting and max NAE SAT. Discrete Appl. Math. 2004, 142, 133–149. [Google Scholar] [CrossRef]
- Lovász, L. Coverings and colorings of hypergraphs. In Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, USA, 5–8 March 1973; Utilitas Mathematica Publishing: Winnipeg, MB, Canada, 1973; pp. 3–12. [Google Scholar]
- Guruswami, V. Inapproximability results for set splitting and satisfiability problems with no mixed clauses. Algorithmica 2004, 38, 451–469. [Google Scholar] [CrossRef]
- Bazgan, C.; Escoffier, B.; Paschos, V.T. Completeness in standard and differential approximation classes: Poly-(D) APX-and (D) PTAS-completeness. Theor. Comput. Sci. 2005, 339, 272–292. [Google Scholar] [CrossRef]
- Boppana, R.; Halldórsson, M.M. Approximating maximum independent sets by excluding subgraphs. BIT Numer. Math. 1992, 32, 180–196. [Google Scholar] [CrossRef]
- Zuckerman, D. Linear degree extractors and the inapproximability of max clique and chromatic number. In Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006; pp. 681–690. [Google Scholar]
- Karakostas, G. A better approximation ratio for the vertex cover problem. ACM Trans. Algorithms 2009, 5, 41. [Google Scholar] [CrossRef]
- Dinur, I.; Safra, S. On the hardness of approximating minimum vertex cover. Ann. Math. 2005, 162, 439–485. [Google Scholar] [CrossRef]
- Marathe, M.V.; Ravi, S. On approximation algorithms for the minimum satisfiability problem. Inform. Process. Lett. 1996, 58, 23–29. [Google Scholar] [CrossRef]
- Hazan, E.; Safra, S.; Schwartz, O. On the complexity of approximating k-set packing. Comput. Complex. 2006, 15, 20–39. [Google Scholar] [CrossRef]
- Halldórsson, M.M.; Kratochvıl, J.; Telle, J.A. Independent sets with domination constraints. Discrete Appl. Math. 2000, 99, 39–54. [Google Scholar] [CrossRef]
- Johnson, D.S. Approximation algorithms for combinatorial problems. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, Austin, TX, USA, 30 April–2 May 1973; pp. 38–49. [Google Scholar]
- Dinur, I.; Steurer, D. Analytical approach to parallel repetition. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 31 May–3 June 2014; ACM: New York, NY, USA, 2014; pp. 624–633. [Google Scholar]
- Frieze, A.; Jerrum, M. Improved approximation algorithms for MAXk-CUT and MAX BISECTION. Algorithmica 1997, 18, 67–81. [Google Scholar] [CrossRef]
- Krauthgamer, R.; Feige, U. A polylogarithmic approximation of the minimum bisection. SIAM Rev. 2006, 48, 99–130. [Google Scholar] [CrossRef]
- Panconesi, A.; Ranjan, D. Quantifiers and approximation. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 13–17 May 1990; pp. 446–456. [Google Scholar]
- Halldórsson, M.M. Approximating Discrete Collections via Local Improvements. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, 22–24 January 1995; pp. 160–169. [Google Scholar]
- Halldórsson, M.M. A still better performance guarantee for approximate graph coloring. Inform. Process. Lett. 1993, 45, 19–23. [Google Scholar] [CrossRef]
- Nishizeki, T.; Kashiwagi, K. On the 1.1 edge-coloring of multigraphs. SIAM J. Discrete Math. 1990, 3, 391–410. [Google Scholar] [CrossRef]
- Lund, C.; Yannakakis, M. On the hardness of approximating minimization problems. J. ACM 1994, 41, 960–981. [Google Scholar] [CrossRef]
- Orponen, P.; Mannila, H. On Approximation Preserving Reductions: Complete Problems and Robust Measures (Revised Version). Available online: https://pdfs.semanticscholar.org/d7d4/44112250080800b25794352814e4f42ae0b0.pdf (accessed on 30 August 2017).
- Papadimitriou, C.H.; Yannakakis, M. The traveling salesman problem with distances one and two. Math. Oper. Res. 1993, 18, 1–11. [Google Scholar] [CrossRef]
- Christofides, N. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem; Technical Report, Management Sciences Research Group; Carnegie-Mellon Univ: Pittsburgh, PA, USA, 1976. [Google Scholar]
- Schaller, J.; Valente, J.M. Minimizing the weighted sum of squared tardiness on a single machine. Comput. Oper. Res. 2012, 39, 919–928. [Google Scholar] [CrossRef]
- Cheng, T.E.; Ng, C.; Yuan, J.; Liu, Z. Single machine scheduling to minimize total weighted tardiness. Eur. J. Oper. Res. 2005, 165, 423–443. [Google Scholar] [CrossRef]
- Lenstra, J.K.; Kan, A.R.; Brucker, P. Complexity of machine scheduling problems. Ann. Discrete Math. 1977, 1, 343–362. [Google Scholar]
- Goemans, M.X.; Queyranne, M.; Schulz, A.S.; Skutella, M.; Wang, Y. Single machine scheduling with release dates. SIAM J. Discrete Math. 2002, 15, 165–192. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadfield, S.; Wang, Z.; O’Gorman, B.; Rieffel, E.G.; Venturelli, D.; Biswas, R. From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms 2019, 12, 34. https://doi.org/10.3390/a12020034
Hadfield S, Wang Z, O’Gorman B, Rieffel EG, Venturelli D, Biswas R. From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms. 2019; 12(2):34. https://doi.org/10.3390/a12020034
Chicago/Turabian StyleHadfield, Stuart, Zhihui Wang, Bryan O’Gorman, Eleanor G. Rieffel, Davide Venturelli, and Rupak Biswas. 2019. "From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz" Algorithms 12, no. 2: 34. https://doi.org/10.3390/a12020034
APA StyleHadfield, S., Wang, Z., O’Gorman, B., Rieffel, E. G., Venturelli, D., & Biswas, R. (2019). From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms, 12(2), 34. https://doi.org/10.3390/a12020034