Robust Guaranteed-Cost Preview Repetitive Control for Polytopic Uncertain Discrete-Time Systems †
Abstract
:1. Introduction
2. Problem Formulation and Preliminaries
- i.
- ii.
- iii.
3. Construction of Augmented Dynamic System
4. Design of the Guaranteed-cost Preview Repetitive Controller
5. Numerical Example
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Proof of Theorem 1
Appendix B. Proof of Theorem 2
References
- Katayama, T.; Ohki, T.; Inoue, T.; Kato, T. Design of an optimal controller for a discrete-time system subject to previewable demand. Int. J. Control 1985, 23, 667–699. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Tadashi, E.; Liao, T.b.F.C. Digital Preview and Predictive Control; Beijing Science and Technology Press: Beijing, China, 1994. [Google Scholar]
- Liao, F.; Tsuchiya, T.; Egami, T.; Xin, Y. Unified approach to optimal preview servo systems and optimal preview for compensated systems. Chin. J. Autom. 1998, 10, 329–336. [Google Scholar]
- Hamada, Y. Flight test results of disturbance attenuation using preview feedforward compensation. IFAC-PapersOnLine 2017, 50, 14188–14193. [Google Scholar] [CrossRef]
- Li, L.; Liao, F.C. Robust preview control for a class of uncertain discrete-time systems with time-varying delay. ISA Trans. 2018, 73, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.Y.; Jiang, S.Y.; Ma, K. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering. Aerosp. Sci. Technol. 2018, 81, 99–107. [Google Scholar] [CrossRef]
- Han, K.; Feng, J.; Li, Y.; Li, S. Reduced-order simultaneous state and fault estimator based fault tolerant preview control for discrete-time linear time-invariant systems. IET Control Theory Appl. 2018, 12, 1601–1610. [Google Scholar] [CrossRef]
- Matthew, O.T.; Theeraphong, W. Optimal LQ feedforward tracking with preview: Practical design for rigid body motion control. Control Eng. Pract. 2014, 26, 41–50. [Google Scholar] [Green Version]
- Robert, H.M.; Robert, R.B.; Bram, S. The information structure of feedforward/preview control using forecast data. IFAC Proc. 2014, 47, 176–181. [Google Scholar]
- Salton, A.T.; Chen, Z.; Zheng, J.; Fu, M. Constrained optimal preview control of dual-stage actuators. IEEE/ASME Trans. Mech. 2016, 21, 1179–1184. [Google Scholar]
- Strohm, J.N.; Lohmann, B. Optimal feedforward preview control by fir filters. IFAC-PapersOnLine 2017, 50, 5115–5120. [Google Scholar] [CrossRef]
- Jadidi, M.G.; Hashemi, E. Optimal preview control of the nao biped robot using a ukf-based state observer. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics, Banff, AB, Canada, 12–15 July 2016. [Google Scholar]
- Birla, N.; Swarup, A. Optimal preview control: A review. Optim. Control Appl. Meth. 2015, 36, 241–268. [Google Scholar] [CrossRef]
- Takaba, K. Robust preview tracking control for polytopic uncertain systems. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, 23–25 December 1998. [Google Scholar]
- Liao, F.; Wan, J.L.; Yang, G.H. LMI-based reliable robust preview tracking control against actuator faults. In Proceedings of the American Control Conference, Arlington, VA, USA, 25–27 June 2001. [Google Scholar]
- Wang, D.; Liao, F.; Tomizuka, M. Adaptive preview control for piecewise discrete-time systems using multiple models. Appl. Math. Model. 2016, 40, 9932–9946. [Google Scholar] [CrossRef]
- Zhen, Z.Y. Research development in preview control theory and applications. Acta Autom. Sin. 2016, 42, 172–188. [Google Scholar]
- Li, L.; Liao, F.C. Parameter-dependent preview control with robust tracking performance. IET Control Theory Appl. 2017, 11, 38–46. [Google Scholar] [CrossRef]
- Liao, F.; Li, L. Robust preview control for uncertain discrete-time systems based on LMI. Optim. Control Appl. Method 2017. [Google Scholar] [CrossRef]
- Inoue, T.; Nakano, M.; Iwai, S. High accuracy control of a proton synchrotron magnet power supply. In Proceedings of the 8th Internat Fedaration on Automatic Control, Kyoto, Japan, 24–28 August 1981; pp. 216–221. [Google Scholar]
- Wang, Y.; Wang, R.; Xie, X.; Zhang, H. Observer-based H∞ fuzzy control for modified repetitive control systems. Neurocomputing 2018, 286, 141–149. [Google Scholar] [CrossRef]
- Hanson, R.D.; Tsao, T.C. Discrete-time repetitive control of LTI systems sampled at a periodic rate. IFAC Proc. 1996, 29, 1458–1463. [Google Scholar] [CrossRef]
- She, J.H.; Pan, Y.; Nakano, M. Repetitive control system with variable structure controller. In Proceedings of the 6th International Workshop on Variable Structure Systems, Gold Coast, Australia, 7–9 December 2000. [Google Scholar]
- Sun, M.; Wang, Y.; Wang, D. Variable-structure repetitive control: a discrete-time strategy. IEEE Trans. Ind. Electron. 2005, 52, 610–616. [Google Scholar] [CrossRef]
- Fan, J.; Kobayashi, T. Discrete repetitive control via positive real compensation. Trans. Soc. Instrum. Control Eng. 2009, 33, 308–310. [Google Scholar] [CrossRef]
- Yuan, S.G.; Wu, M.; Xu, B.G.; Liu, R.J. Design of discrete-time repetitive control system based on two-dimensionalmodel. Int. J. Autom. Comput. 2012, 9, 165–168. [Google Scholar] [CrossRef]
- Zhou, L.; She, J.H.; Wu, M. Design of a design of a discrete-time output-feedback based repetitive-control system. Int. J. Autom. Comput. 2013, 10, 343–349. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yi, L.Z.; Lan, Y.H.; Chen, C.X. Design of observer-based discrete repetitive-control system based on 2D model. J. Cent. South Univ. 2014, 21, 4236–4243. [Google Scholar] [CrossRef]
- Ahn, H.S.; Chen, Y.Q.; Moore, K.L. Iterative learning control: Brief survey and categorization. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2007, 37, 1099–1121. [Google Scholar] [CrossRef]
- Mandra, S.; Galkowski, K.; Aschemann, H. Robust guaranteed cost ILC with dynamic feedforward and disturbance compensation for accurate PMSM position control. Control Eng. Pract. 2017, 65, 36–47. [Google Scholar] [CrossRef]
- Mandra, S.; Galkowski, K.; Rogers, E.; Rauh, A.; Aschemann, H. Performance-enhanced robust iterative learning control with experimental application to pmsm position tracking. IEEE Trans. Control Syst. Technol. 2018, 1, 1–78. [Google Scholar] [CrossRef]
- Park, J.H. Guaranteed cost stabilization of neutral differential systems with parametric uncertainty. Int. J. Comput. Appl. Math. 2003, 151, 371–382. [Google Scholar] [CrossRef]
- Shi, P.; Boukas, K.K.; Shi, Y.; Agarwal, R.K. Optimal guaranteed cost control of uncertain discrete time-delay systems. Int. J. Comput. Appl. Math. 2004, 157, 435–451. [Google Scholar] [CrossRef]
- Fu, C.; He, Y.; Wu, M.; Yuan, S. Guaranteed cost robust discrete repetitive control based on two-dimension model. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010. [Google Scholar]
- Lan, M.W.Y.H.; She, J.H.; He, Y. Design of nonfragile guaranteed-cost repetitive-control system based on two-dimensional model. Asian J. Control 2012, 14, 109–124. [Google Scholar]
- Aleksander, H. Optimal linear preview control of active vehicle suspension. Veh. Syst. Dyn. 1992, 21, 167–195. [Google Scholar]
- Marzbanrad, J.; Ahmadi, G.; Jha, R. Optimal preview active control of structures during earthquakes. Eng. Struct. 2004, 26, 1463–1471. [Google Scholar] [CrossRef]
- Tomizuka, M.; Tsao, T.C.; Chew, K.K. Analysis and synthesis of discrete-time repetitive controllers. Trans. ASME J. Dyn. Syst. Meas. Control 1989, 111, 353–358. [Google Scholar] [CrossRef]
- Boyd, S.; Ghaoui, L.; Feron, E. Linear Matrix Inequalities in System and Control Theory; SIAM Studies in Applied Mathematics: Philadelphia, PA, USA, 1994. [Google Scholar]
- Nasiri, A.; Nguang, S.K.; Swain, A.; Almakhles, D.J. Robust output feedback controller design of discrete-time Takagi-Sugeno fuzzy systems: A nonmonotonic Lyapunov approach. IET Control Theory Appl. 2016, 10, 545–553. [Google Scholar] [CrossRef]
- Chang, X.H.; Zhang, L.; Park, J.H. Robust static output feedback H∞ control for uncertain fuzzy systems. Fuzzy Sets Syst. 2015, 273, 87–104. [Google Scholar] [CrossRef]
- Kumar, E.V.; Raaja, G.S.; Jerome, J. Adaptive PSO for optimal LQR tracking control of 2 DoF laboratory helicopter. Appl. Soft Comput. 2016, 41, 77–90. [Google Scholar] [CrossRef]
- Habib, M.; Khoucha, F.; Harrag, A. GA-based robust LQR controller for interleaved boost DC-DC converter improving fuel cell voltage regulation. Electr. Power Syst. Res. 2017, 152, 438–456. [Google Scholar] [CrossRef]
1 | [0.0563 −0.0045 −0.0019 −0.0009 −0.0009 −0.0013 | −2.3632 | [−0.0104 2.5237] |
−0.0023 −0.0007 0.0397 2.4240] | |||
2 | [−0.0451 −0.0073 −0.0014 −0.0004 −0.0008 −0.0008 | −2.2864 | [−0.0085 2.4135 0.0452] |
−0.0026 0.0006 0.0385 2.4005] | |||
7 | [0.0300 −0.0062 −0.0014 -0.0005 −0.0004 −0.0007 | −2.2472 | [−0.0035 2.3169 0.0380 −0.0002 −0.0015 −0.0011 |
−0.0012 0.0003 0.0378 2.3170] | −0.0008 −0.0010] | ||
8 | [0.0302 −0.0062 −0.0016 −0.0005 −0.0004 −0.0007 | −2.2472 | [−0.0038 2.3175 0.0382 −0.0002 −0.0014 −0.0010 |
−0.0012 0.0001 0.0379 2.3173] | −0.0006 −0.0007 −0.0022] | ||
9 | [0.0306 −0.0066 −0.0015 −0.0005 −0.0004 −0.0007 | −2.2483 | [−0.0040 2.3196 0.0378 −0.0001 −0.0013 −0.0009 |
−0.0012 −0.0001 0.0379 2.3173] | −0.0006 −0.0007 −0.0018 −0.0081] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, Y.-H.; Xia, J.-J.; Shi, Y.-X. Robust Guaranteed-Cost Preview Repetitive Control for Polytopic Uncertain Discrete-Time Systems. Algorithms 2019, 12, 20. https://doi.org/10.3390/a12010020
Lan Y-H, Xia J-J, Shi Y-X. Robust Guaranteed-Cost Preview Repetitive Control for Polytopic Uncertain Discrete-Time Systems. Algorithms. 2019; 12(1):20. https://doi.org/10.3390/a12010020
Chicago/Turabian StyleLan, Yong-Hong, Jun-Jun Xia, and Yue-Xiang Shi. 2019. "Robust Guaranteed-Cost Preview Repetitive Control for Polytopic Uncertain Discrete-Time Systems" Algorithms 12, no. 1: 20. https://doi.org/10.3390/a12010020
APA StyleLan, Y. -H., Xia, J. -J., & Shi, Y. -X. (2019). Robust Guaranteed-Cost Preview Repetitive Control for Polytopic Uncertain Discrete-Time Systems. Algorithms, 12(1), 20. https://doi.org/10.3390/a12010020