Learning an Efficient Convolution Neural Network for Pansharpening
Abstract
:1. Introduction
- (1)
- We propose a four-layer inference network optimized with deep learning techniques for pansharpening. Compared with most CNN models, our inference network is lighter and requires less power consumption. Experiments demonstrate that our model significantly decreases the computational burden and tends to achieve satisfactory performance.
- (2)
- To make full use of the features extracted by convolutional layers, we introduce a dilated multilevel structure, where the former features under different receptive fields are concatenated with a local concatenation layer. We also introduce an overall skip connection to further compensate the lost details. Experimental results reveal that with local and overall compensation, our multilevel network exhibits novel performance even with four layers.
- (3)
- As our network is shallow and trained with several domain-specific techniques to prevent overfitting, our model exhibits more robust fusion ability when generalized to new satellites. This is not a common feature of other deep CNN approaches, since most of them are trained on specific datasets with deep networks, which lead to severe overfitting problem.
2. Related Work
2.1. Linear Models in Pansharpening
2.2. Convolution Neural Networks in Pansharpening
3. Proposed Model
3.1. Dilated Convolution
3.2. Dilated Multilevel Block
3.3. Residual Learning
4. Experiment
4.1. Experimental Settings
4.1.1. Datasets
4.1.2. Loss Function
4.1.3. Training Details
4.2. Experimental Results and Analysis
4.2.1. Reduced Scale Experiment
4.2.2. Original Scale Experiment
4.2.3. Generalization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A Critical Comparison Among Pansharpening Algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [Google Scholar] [CrossRef]
- Shahdoosti, H.R.; Ghassemian, H. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter. Inf. Fusion 2016, 27, 150–160. [Google Scholar] [CrossRef]
- Qizhi Xu, Q.; Bo Li, B.; Yun Zhang, Y.; Lin Ding, L. High-Fidelity Component Substitution Pansharpening by the Fitting of Substitution Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7380–7392. [Google Scholar] [CrossRef]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6, 011,875, 4 January 2000. [Google Scholar]
- Pradhan, P.S.; King, R.L.; Younan, N.H.; Holcomb, D.W. Estimation of the Number of Decomposition Levels for a Wavelet-Based Multiresolution Multisensor Image Fusion. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3674–3686. [Google Scholar] [CrossRef]
- Restaino, R.; Dalla Mura, M.; Vivone, G.; Chanussot, J. Context-Adaptive Pansharpening Based on Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 753–766. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. MTF-Based Deblurring Using a Wiener Filter for CS and MRA Pansharpening Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2255–2269. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Liu, W.; Huang, J. SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework. IEEE Trans. Image Process. 2015, 24, 4213–4224. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Meng, X.; Zhang, L. An Integrated Framework for the Spatio–Temporal–Spectral Fusion of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7135–7148. [Google Scholar] [CrossRef]
- Aly, H.A.; Sharma, G. A Regularized Model-Based Optimization Framework for Pan-Sharpening. IEEE Trans. Image Process. 2014, 23, 2596–2608. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G.; Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594. [Google Scholar] [CrossRef]
- Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A Deep Network Architecture for Pan-Sharpening. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1753–1761. [Google Scholar]
- Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L. Boosting the Accuracy of Multispectral Image Pansharpening by Learning a Deep Residual Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1795–1799. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Yang, B.; Huang, G.; Zhong, F.; Chen, Z. Remote Sensing Image Fusion with Convolutional Neural Network. Sens. Imaging 2016, 17, 10. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv, 2015; arXiv:1511.07122. [Google Scholar]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning Deep CNN Denoiser Prior for Image Restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017; pp. 2808–2817. [Google Scholar]
- Divakar, N.; Babu, R.V. Image Denoising via CNNs: An Adversarial Approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21 July 2017; pp. 1076–1083. [Google Scholar]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 19–21 June 2018. [Google Scholar]
- Lefkimmiatis, S. Universal Denoising Networks: A Novel CNN Architecture for Image Denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 19–21 June 2018; pp. 3204–3213. [Google Scholar]
- Zhang, Y.; Tian, Y.; Ukong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 19–21 June 2018. [Google Scholar]
- Wald, L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions; Presses de l’Ecole: Ecole des Mines de Paris, France, 2002; ISBN 291176238X. [Google Scholar]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored Multiscale Fusion of High-resolution MS and Pan Imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1310–1318. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1139–1147. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678. [Google Scholar]
- Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE Pan Sharpening of Very High Resolution Multispectral Images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 228–236. [Google Scholar] [CrossRef]
- Ghahremani, M.; Ghassemian, H. Nonlinear IHS: A Promising Method for Pan-Sharpening. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1606–1610. [Google Scholar] [CrossRef]
- Khan, M.M.; Chanussot, J.; Condat, L.; Montanvert, A. Indusion: Fusion of Multispectral and Panchromatic Images Using the Induction Scaling Technique. IEEE Geosci. Remote Sens. Lett. 2008, 5, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Restaino, R.; Vivone, G.; Dalla Mura, M.; Chanussot, J. Fusion of Multispectral and Panchromatic Images Based on Morphological Operators. IEEE Trans. Image Process. 2016, 25, 2882–2895. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Hu, Y.; Huang, Y.; Xu, Z.; Ding, X. Pan-sharpening with structural consistency and ℓ1/2 gradient prior. Remote Sens. Lett. 2016, 7, 1170–1179. [Google Scholar] [CrossRef]
- Zhou, W.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. A Global Quality Measurement of Pan-Sharpened Multispectral Imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 313–317. [Google Scholar] [CrossRef]
- Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm. In Proceedings of the 3rd Annual JPL Airborne Geoscience Workshop; AVIRIS Workshop, Pasadena, CA, USA, 1–5 June 1992; pp. 147–149. [Google Scholar]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and Panchromatic Data Fusion Assessment Without Reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Liu, W.; Huang, J. Image Fusion with Local Spectral Consistency and Dynamic Gradient Sparsity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 2760–2765. [Google Scholar]
Reference | 1 | 1 | 0 | 0 | 1 | 0 |
BDSD | 0.8224 | 0.8080 | 5.9732 | 4.0023 | 0.8145 | 0.25 s (CPU) |
NIHS | 0.7770 | 0.7642 | 5.1216 | 4.2357 | 0.7668 | 2.55 s (CPU) |
Indusion | 0.7948 | 0.7982 | 5.0844 | 3.8993 | 0.8016 | 0.17 s (CPU) |
NMRA | 0.8487 | 0.8413 | 4.5072 | 3.2280 | 0.8741 | 0.19 s (CPU) |
ℓ1/2 | 0.8065 | 0.7880 | 4.7067 | 4.0404 | 0.7106 | 12.56 s (CPU) |
PNN | 0.8377 | 0.8459 | 5.0428 | 3.1775 | 0.9005 | 0.61 s (GPU) |
MSDCNN | 0.8741 | 0.8580 | 4.3776 | 2.7740 | 0.9149 | 0.14 s (GPU) |
Proposed | 0.8772 | 0.8758 | 3.7132 | 2.4658 | 0.9258 | 0.07 s (GPU) |
Reference | 1 | 0 | 0 | 0 | 1 | 0 |
BDSD | 0.8609 | 0.0523 | 0.0916 | 3.9974 | 0.5944 | 0.24 s (CPU) |
NIHS | 0.8566 | 0.0382 | 0.1094 | 2.1968 | 0.8098 | 2.99 s (CPU) |
Indusion | 0.8359 | 0.0859 | 0.0855 | 1.9411 | 0.8112 | 0.16 s (CPU) |
NMRA | 0.7453 | 0.1245 | 0.1486 | 1.8985 | 0.8196 | 0.50 s (CPU) |
ℓ1/2 | 0.7813 | 0.0880 | 0.1423 | 1.8592 | 0.8083 | 12.89 s (CPU) |
PNN | 0.8496 | 0.0434 | 0.1118 | 2.6279 | 0.8046 | 0.60 s (GPU) |
MSDCNN | 0.8705 | 0.0397 | 0.0936 | 2.5754 | 0.8201 | 0.14 s (GPU) |
Proposed | 0.9096 | 0.0197 | 0.0721 | 1.7561 | 0.8150 | 0.07 s (GPU) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Ye, F.; Gong, H. Learning an Efficient Convolution Neural Network for Pansharpening. Algorithms 2019, 12, 16. https://doi.org/10.3390/a12010016
Guo Y, Ye F, Gong H. Learning an Efficient Convolution Neural Network for Pansharpening. Algorithms. 2019; 12(1):16. https://doi.org/10.3390/a12010016
Chicago/Turabian StyleGuo, Yecai, Fei Ye, and Hao Gong. 2019. "Learning an Efficient Convolution Neural Network for Pansharpening" Algorithms 12, no. 1: 16. https://doi.org/10.3390/a12010016
APA StyleGuo, Y., Ye, F., & Gong, H. (2019). Learning an Efficient Convolution Neural Network for Pansharpening. Algorithms, 12(1), 16. https://doi.org/10.3390/a12010016