Dombi Aggregation Operators of Neutrosophic Cubic Sets for Multiple Attribute Decision-Making
Abstract
:1. Introduction
2. Preliminaries
- (1)
- If S(x1) > S(x2), then x1 ≻ x2;
- (2)
- If S(x1) = S(x2) and A(x1) > A(x2), then x1 ≻ x2;
- (3)
- If S(x1) = S(x2), A(x1) = A(x2) and C(x1) > C(x2), then x1 ≻ x2;
- (4)
- If S(x1) = S(x2), A(x1) = A(x2) and C(x1) = C(x2), then x1 ~ x2.
- (1)
- Assume that Ψ1 = (<[0.8, 0.9], [0.1, 0.2], [0.2, 0.3]>, <0.7, 0.1, 0.2>) and Ψ2 = (<[0.5, 0.6], [0.3, 0.4], [0.4, 0.5]>, <0.5, 0.3, 0.4>). Referring to Definition 5, S(Ψ1) = 0.8111, S(Ψ2) = 0.5889, A(Ψ1) = 0.5667, A(Ψ2) = 0.1000, C(Ψ1) = 0.8000, C(Ψ2) = 0.5333. According to Definition 6, S(Ψ1) > S(Ψ2), therefore, Ψ1 ≻ Ψ2.
- (2)
- Assume that Ψ1 = (<[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]>, <0.5, 0.2, 0.3>) and Ψ2 = (<[0.3, 0.4], [0.1, 0.2], [0.2, 0.3]>, <0.3, 0.1, 0.2>). Referring to Definition 5, S(Ψ1) = 0.6556, S(Ψ2) = 0.6556, A(Ψ1) = 0.2000, A(Ψ2) = 0.1000, C(Ψ1) = 0.5333, C(Ψ2) = 0.3333. According to Definition 6, S(Ψ1) = S(Ψ2), A(Ψ1) > A(Ψ2), therefore, Ψ1 ≻ Ψ2.
- (3)
- Assume that Ψ1 = (<[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]>, <0.5, 0.2, 0.3>) and Ψ2 = (<[0.3, 0.4], [0.2, 0.3], [0.1, 0.2]>, <0.3, 0.2, 0.1>). Referring to Definition 5, S(Ψ1) = 0.6556, S(Ψ2) = 0.6556, A(Ψ1) = 0.2000, A(Ψ2) = 0.2000, C(Ψ1) = 0.5333, C(Ψ2) = 0.3333. According to Definition 6, S(Ψ1) = S(Ψ2), A(Ψ1) = A(Ψ2), C(Ψ1) > C(Ψ2) therefore, Ψ1 ≻ Ψ2.
3. Some Dombi Operations of NCNs
4. Dombi Weighted Aggregation Operators of NCSs
- (i)
- Reducibility: If ω = (1/n, 1/n, …, 1/n), then there exists
- (ii)
- Idempotency: Let (j = 1, 2, ..., n) be a group of NCNs. When xj = x for j = 1, 2, …, n, there is NCDWAA (x1, x2, …, xn) = x.
- (iii)
- Commutativity: Suppose the be any permutation of (x1, x2, …, xn). Then,
- (iv)
- Boundedness: Let Then, xmin ≤ NCDWAA (x1, x2, …, xn) ≤ xmax.
- (i)
- Reducibility: If ω = (1/n, 1/n, …, 1/n), then there exists
- (ii)
- Idempotency: Let xj = x for j = 1, 2, …, n, there is NCDWGA (x1, x2, …, xn) = x.
- (iii)
- Commutativity: Suppose the be any permutation of (x1, x2, …, xn). Then,
- (iv)
- Boundedness: Let Then, xmin ≤ NCDWGA (x1, x2, …, xn) ≤ xmax.
5. MADM Method Using the NCDWAA or NCDWGA Operators
6. Illustrative Examples and Comparison Analysis
6.1. Illustrative Examples
6.2. Comparison Analysis
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Turksen, I.B. Interval-valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 1986, 20, 191–210. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multisp. Multistruct. 2010, 4, 410–413. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar] [CrossRef]
- Ye, J. Bidirectional projection method for multiple attribute group decision making with neutrosophic numbers. Neural Comput. Appl. 2017, 28, 1021–1029. [Google Scholar] [CrossRef]
- Ye, J. Multiple-attribute group decision-making method under a neutrosophic number environment. J. Intell. Fuzzy Syst. 2016, 25, 377–386. [Google Scholar] [CrossRef]
- Tian, Z.P.; Wang, J.Q.; Zhang, H.Y. Hybrid single-valued neutrosophic MCGDM with QFD for market segment evaluation and selection. J. Intell. Fuzzy Syst. 2018, 34, 177–187. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhang, X.; Zhang, H.Y. Hotel recommendation approach based on the online consumer reviews using interval neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2018, 34, 381–394. [Google Scholar] [CrossRef]
- Ye, J. Improved correlation coefficients of single valued neutrosophic sets and interval neutrosophic sets for multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2453–2462. [Google Scholar] [CrossRef]
- Shi, L. Correlation coefficient of simplified neutrosophic sets for bearing fault diagnosis. Shock Vib. 2016, 2016, 5414361. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q. Multi-valued Neutrosophic Sets and Its Application in Multi-criteria Decision-Making Problems. Neutrosophic Sets Syst. 2015, 10, 3–17. [Google Scholar] [CrossRef]
- Smarandache, F. n-Valued refined neutrosophic logic and its applications in physics. Prog. Phys. 2013, 4, 143–146. [Google Scholar]
- Broumi, S.; Smarandache, F. Intuitionistic neutrosophic soft set. J. Inf. Comput. Sci. 2013, 8, 130–140. [Google Scholar]
- Broum, S.; Smarandache, F.; Dhar, M. Rough neutrosophic sets. Neutrosophic Sets Syst. 2014, 3, 62–67. [Google Scholar]
- Ye, J. Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. J. Intell. Fuzzy Syst. 2015, 24, 23–36. [Google Scholar] [CrossRef]
- Ye, J.; Smarandache, F. Similarity measure of refined single-valued neutrosophic sets and its multicriteria decision making method. Neutrosophic Sets Syst. 2016, 12, 41–44. [Google Scholar]
- Karaaslan, F. Correlation coefficient between possibility neutrosophic soft sets. Math. Sci. Lett. 2016, 5, 71–74. [Google Scholar] [CrossRef]
- Fang, Z.B.; Ye, J. Multiple attribute group decision-making method based on linguistic neutrosophic number. Symmetry 2017, 9, 111. [Google Scholar] [CrossRef]
- Shi, L.; Ye, J. Cosine measures of linguistic neutrosophic numbers and their application in multiple attribute group decision-making. Information 2017, 8. [Google Scholar] [CrossRef]
- Ye, J. Multiple attribute decision-making method using correlation coefficients of normal neutrosophic sets. Symmetry 2017, 9, 80. [Google Scholar] [CrossRef]
- Şahin, R.; Liu, P. Correlation coefficient of single-valued neutrosophic hesitant fuzzy sets and its applications in decision making. Neural Comput. Appl. 2017, 28, 1387–1395. [Google Scholar] [CrossRef]
- Jun, Y.B.; Kim, C.S.; Yang, K.O. Cubic sets. Ann. Fuzzy Math. Inf. 2012, 4, 83–98. [Google Scholar]
- Ali, M.; Deli, I.; Smarandache, F. The theory of neutrosophic cubic sets and their applications in pattern recognition. J. Intell. Fuzzy Syst. 2016, 30, 1957–1963. [Google Scholar] [CrossRef]
- Jun, Y.B.; Smarandache, F.; Kim, C.S. P-union and P-intersection of neutrosophic cubic sets. An. St. Univ. Ovidius Constanta 2017, 25, 99–115. [Google Scholar] [CrossRef]
- Zhan, J.; Khan, M.; Gulistan, M.; Ali, A. Applications of neutrosophic cubic sets in multi-criteria decision making. Int. J. Uncertain. Quantif. 2017, 7, 377–394. [Google Scholar] [CrossRef]
- Banerjee, D.; Giri, B.C.; Pramanik, S.; Smarandache, F. GRA for multi attribute decision making in neutrosophic cubic set environment. Neutrosophic Sets Syst. 2017, 15, 64–73. [Google Scholar]
- Lu, Z.; Ye, J. Cosine measures of neutrosophic cubic sets for multiple attribute decision-making. Symmetry 2017, 9. [Google Scholar] [CrossRef]
- Pramanik, S.; Dalapati, S.; Alam, S.; Roy, T.K.; Smarandache, F. Neutrosophic cubic MCGDM method based on similarity measure. Neutrosophic Sets Syst. 2017, 16, 44–56. [Google Scholar]
- Pramanik, S.; Dalapati, S.; Alam, S.; Roy, T.K. NC-TODIM based MAGDM under neutrosophic cubic set environment. Information 2017, 8. [Google Scholar] [CrossRef]
- Wei, G.W. Some harmonic aggregation operators with 2-tuple linguistic assessment information and their application to multiple attribute group decision making. Int. J. Uncertain. Quantif. Fuzz. Knowl. Based Syst. 2011, 19, 977–998. [Google Scholar] [CrossRef]
- Das, S.; Guha, D. Power harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems. Iran. J. Fuzzy Syst. 2015, 12, 41–74. [Google Scholar]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Verma, R. Generalized Bonferroni mean operator for fuzzy number intuitionistic fuzzy sets and their application to multi attribute decision making. Int. J. Intell. Syst. 2015, 30, 499–519. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.Y.; Wang, J.Q. Frank Choquet Bonferroni mean operators of bipolar neutrosophic sets and their application to multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2017. [Google Scholar] [CrossRef]
- Liu, P.D.; Li, H.G. Multiple attribute decision-making method based on some normal neutrosophic Bonferroni mean operators. Neural Comput. Appl. 2017, 28, 179–194. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, B.D. Intuitionistic fuzzy Einstein prioritized weighted operators and their application to multiple attribute group decision making. Appl. Math. Inf. Sci. 2015, 9, 3095–3107. [Google Scholar] [CrossRef]
- Zhao, A.W.; Du, J.G.; Guan, H.J. Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 2015, 29, 2697–2706. [Google Scholar] [CrossRef]
- Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. J. Intell. Fuzzy Syst. 2015, 28, 2443–2455. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, Z.; Cui, F. Generalized hesitant fuzzy harmonic mean operators and their applications in group decision making. Int. J. Fuzzy Syst. 2016, 18, 685–696. [Google Scholar] [CrossRef]
- Liao, H.; Xu, Z. Extended hesitant fuzzy hybrid weighted aggregation operators and their application in decision making. Soft Comput. 2015, 19, 2551–2564. [Google Scholar] [CrossRef]
- Wang, X.F.; Wang, J.Q.; Deng, S.Y. Some geometric operators for aggregating intuitionistic linguistic information. Int. J. Fuzzy Syst. 2015, 17, 268–278. [Google Scholar] [CrossRef]
- Verma, R. Multiple attribute group decision making based on generalized trapezoid fuzzy linguistic prioritized weighted average operator. Int. J. Mach. Learn. Cybern. 2016, 8, 1993–2007. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex 2016, 29, 681–697. [Google Scholar] [CrossRef]
- Ye, J. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods. Springerplus 2016, 5, 1488. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shen, Q.; Zhu, L. Dual hesitant fuzzy power aggregation operators based on archimedean T-conorm and T-norm and their application to multiple attribute group decision making. Appl. Soft Comput. 2016, 38, 23–50. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. J. Intell. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Dombi, J. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 1982, 8, 149–163. [Google Scholar] [CrossRef]
- Liu, P.D.; Liu, J.L.; Chen, S.M. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Oper. Res. Soc. 2017. [Google Scholar] [CrossRef]
- Chen, J.Q.; Ye, J. Some single-valued neutrosophic Dombi weighted aggregation operators for multiple attribute decision-making. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
- Ye, J. Linguistic neutrosophic cubic numbers and their multiple attribute decision-making method. Information 2017, 8, 110. [Google Scholar] [CrossRef]
ρ | S(x1) S(x2) S(x3) S(x4) | Ranking Order | The Best Alternative |
---|---|---|---|
1 | 0.5928, 0.5576, 0.6206, 0.5942 | X3 ≻ X4 ≻ X1 ≻ X2 | X3 |
2 | 0.6176, 0.5896, 0.6763, 0.6360 | X3 ≻ X4 ≻ X1 ≻ X2 | X3 |
3 | 0.6334, 0.6091, 0.7047, 0.6631 | X3 ≻ X4 ≻ X1 ≻ X2 | X3 |
4 | 0.6441, 0.6210, 0.7215, 0.6802 | X3 ≻ X4 ≻ X1 ≻ X2 | X3 |
5 | 0.6516, 0.6289, 0.7323, 0.6916 | X3 ≻ X4 ≻ X1 ≻ X2 | X3 |
ρ | S(x1) S(x2) S(x3) S(x4) | Ranking Order | The Best Alternative |
---|---|---|---|
1 | 0.4966, 0.4626, 0.4880, 0.4685 | X1 ≻ X3 ≻ X4 ≻ X2 | X1 |
2 | 0.4524, 0.4246, 0.4645, 0.4112 | X3 ≻ X1 ≻ X2 ≻ X4 | X3 |
3 | 0.4238, 0.3980, 0.4483, 0.3781 | X3 ≻ X1 ≻ X2 ≻ X4 | X3 |
4 | 0.4053, 0.3803, 0.4364, 0.3584 | X3 ≻ X1 ≻ X2 ≻ X4 | X3 |
5 | 0.3925, 0.3680, 0.4274, 0.3456 | X3 ≻ X1 ≻ X2 ≻ X4 | X3 |
ρ | S(Q1) S(Q2) S(Q3) | Ranking Order | The Best Alternative |
---|---|---|---|
1 | 0.5241, 0.5739, 0.5437 | Q2 ≻ Q3 ≻ Q1 | Q2 |
2 | 0.5410, 0.5934, 0.5474 | Q2 ≻ Q3 ≻ Q1 | Q2 |
3 | 0.5534, 0.6041, 0.5513 | Q2 ≻ Q1 ≻ Q3 | Q2 |
4 | 0.5626, 0.6109, 0.5547 | Q2 ≻ Q1 ≻ Q3 | Q2 |
5 | 0.5697, 0.6158, 0.5574 | Q2 ≻ Q1 ≻ Q3 | Q2 |
ρ | S(Q1) S(Q2) S(Q3) | Ranking Order | The Best Alternative |
---|---|---|---|
1 | 0.4760, 0.4856, 0.5095 | Q3 ≻ Q2 ≻ Q1 | Q3 |
2 | 0.4604, 0.4502, 0.4883 | Q3 ≻ Q1 ≻ Q2 | Q3 |
3 | 0.4509, 0.4300, 0.4737 | Q3 ≻ Q1 ≻ Q2 | Q3 |
4 | 0.4448, 0.4176, 0.4637 | Q3≻ Q1 ≻ Q2 | Q3 |
5 | 0.4406, 0.4093, 0.4567 | Q3 ≻ Q1 ≻ Q2 | Q3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Ye, J. Dombi Aggregation Operators of Neutrosophic Cubic Sets for Multiple Attribute Decision-Making. Algorithms 2018, 11, 29. https://doi.org/10.3390/a11030029
Shi L, Ye J. Dombi Aggregation Operators of Neutrosophic Cubic Sets for Multiple Attribute Decision-Making. Algorithms. 2018; 11(3):29. https://doi.org/10.3390/a11030029
Chicago/Turabian StyleShi, Lilian, and Jun Ye. 2018. "Dombi Aggregation Operators of Neutrosophic Cubic Sets for Multiple Attribute Decision-Making" Algorithms 11, no. 3: 29. https://doi.org/10.3390/a11030029
APA StyleShi, L., & Ye, J. (2018). Dombi Aggregation Operators of Neutrosophic Cubic Sets for Multiple Attribute Decision-Making. Algorithms, 11(3), 29. https://doi.org/10.3390/a11030029