Stable Analysis of Compressive Principal Component Pursuit
Abstract
:1. Introduction
2. Notations and Main Results
2.1. Notations
2.2. Main Results
3. Main Lemmas
4. Proof of Theorem 1
5. Numerical Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimzation. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef]
- Candès, E.J.; Plan, Y. Matrix completion with noise. Proc. IEEE 2010, 98, 925–936. [Google Scholar] [CrossRef]
- Candès, E.J.; Tao, T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 2010, 56, 2053–2080. [Google Scholar] [CrossRef]
- Ellenberg, J. Fill in the blanks: Using math to turn lo-res datasets into hi-res samples. Wired 2010. Available online: https://www.wired.com/2010/02/ff_algorithm/all/1 (accessed on 26 January 2016). [Google Scholar]
- Antonin Chambolle and Pierre-Louis Lions. Image recovery via total variation minimization and related problems. Numer. Math. 1997, 76, 167–188. [Google Scholar]
- Jon, F. Claerbout and Francis Muir. Robust modeling of erratic data. Geophysics 1973, 38, 826–844. [Google Scholar]
- Zeng, B.; Fu, J. Directional discrete cosine transforms: A new framework for image coding. IEEE Trans. Circuits Syst. Video Technol. 2011, 18, 305–313. [Google Scholar] [CrossRef]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Rodger, J.A. Toward reducing failure risk in an integrated vehicle health maintenance system: A fuzzy multi-sensor data fusion Kalman filter approach for IVHMS. Expert Syst. Appl. 2012, 39, 9821–9836. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011. [Google Scholar] [CrossRef]
- Wright, J.; Ganesh, A.; Min, K.; Ma, Y. Compressive Principal Component Pursuit. Available online: http://yima.csl.illinois.edu/psfile/CPCP.pdf (accessed on 9 April 2012).
- Recht, B.; Fazel, M.; Parrilo, P. Guaranteed minimum rank solutions of matrix equations via nuclear norm minimization. arXiv, 2007; arxiv:0706.4138. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Wright, J.; Candès, E.J.; Ma, Y. Stable Principal Component Pursuit. arXiv, 2010; arXiv:1001.2363v1. [Google Scholar]
- Yuan, X.; Yang, J. Sparse and low rank matrix decomposition via alternating direction method. Pac. J. Optim. 2009, 9, 167–180. [Google Scholar]
- Kontogiorgis, S.; Meyer, R. A variable-penalty alternating direction method for convex optimization. Math. Program. 1989, 83, 29–53. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Q.; Wan, Q. Stable Analysis of Compressive Principal Component Pursuit. Algorithms 2017, 10, 29. https://doi.org/10.3390/a10010029
You Q, Wan Q. Stable Analysis of Compressive Principal Component Pursuit. Algorithms. 2017; 10(1):29. https://doi.org/10.3390/a10010029
Chicago/Turabian StyleYou, Qingshan, and Qun Wan. 2017. "Stable Analysis of Compressive Principal Component Pursuit" Algorithms 10, no. 1: 29. https://doi.org/10.3390/a10010029
APA StyleYou, Q., & Wan, Q. (2017). Stable Analysis of Compressive Principal Component Pursuit. Algorithms, 10(1), 29. https://doi.org/10.3390/a10010029