A Preconditioned Iterative Method for Solving Systems of Nonlinear Equations Having Unknown Multiplicity
Abstract
:1. Introduction
2. Proposed Method
3. Convergence
4. Numerical Testing
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Ahmad, F.; Tohidi, E.; Carrasco, J.A. A parameterized multi-step Newton method for solving systems of nonlinear equations. Numer. Algorithms 2016, 71, 631. [Google Scholar] [CrossRef]
- Ullah, M.Z.; Serra-Capizzano, S.; Ahmad, F. An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs. Appl. Math. Comput. 2015, 250, 249–259. [Google Scholar] [CrossRef]
- Ahmad, F.; Tohidi, E.; Ullah, M.Z.; Carrasco, J.A. Higher order multi-step Jarratt-like method for solving systems of nonlinear equations: Application to PDEs and ODEs. Comput. Math. Appl. 2015, 70, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Alaidarous, E.S.; Ullah, M.Z.; Ahmad, F.; Al-Fhaid, A.S. An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs. J. Appl. Math. 2013, 2013, 259371. [Google Scholar] [CrossRef]
- Ullah, M.Z.; Soleymani, F.; Al-Fhaid, A.S. Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs. Numer. Algorithms 2014, 67, 223–242. [Google Scholar] [CrossRef]
- Montazeri, H.; Soleymani, F.; Shateyi, S.; Motsa, S.S. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations. J. Appl. Math. 2012, 2012, 751975. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martinez, E.; Torregrosa, J.R. A modified Newton-Jarratt’s composition. Numer. Algorithms 2010, 55, 87–99. [Google Scholar] [CrossRef]
- Chun, C. A method for obtaining iterative formulas of order three. Appl. Math. Lett. 2007, 20, 1103–1109. [Google Scholar] [CrossRef]
- Chun, C. On the construction of iterative methods with at least cubic convergence. Appl. Math. Comput. 2007, 189, 1384–1392. [Google Scholar] [CrossRef]
- Chun, C. Some variant of Chebshev-Halley method free from second derivative. Appl. Math. Comput. 2007, 191, 1384–1392. [Google Scholar]
- Osada, N. Improving the order of convergence of iterative functions. J. Comput. Appl. Math. 1998, 98, 311–315. [Google Scholar] [CrossRef]
- Noor, M.A.; Shah, F.A. Variational iteration technique for solving nonlinear equations. J. Appl. Math. Comput. 2009, 31, 247–254. [Google Scholar] [CrossRef]
- Noor, M.A.; Shah, F.A.; Noor, K.I.; Al-Said, E. Variational iteration technique for finding multiple roots of nonlinear equations. Sci. Res. Essays 2011, 6, 1344–1350. [Google Scholar]
- Noor, M.A.; Shah, F.A. A family of iterative schemes for finding zeros of nonlinear equations having unknown multiplicity. Appl. Math. Inf. Sci. 2014, 8, 2367–2373. [Google Scholar] [CrossRef]
- Shah, F.A.; Noor, M.A.; Batool, M. Derivative-free iterative methods for solving nonlinear equations. Appl. Math. Inf. Sci. 2014, 8, 2189–2193. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinbodt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press Limited: London, UK, 1970. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Hueso, J.L.; Martinez, E.; Torregrosa, J.R. Modified Newton’s method for systems of nonlinear equations with singular Jacobian. J. Comput. Appl. Math. 2009, 224, 77–83. [Google Scholar] [CrossRef]
- Wu, X. Note on the improvement of Newton’s method for systems of nonlinear equations. Appl. Math. Comput. 2007, 189, 1476–1479. [Google Scholar] [CrossRef]
- Noor, M.A.; Waseem, M.; Noor, K.I.; Al-Said, E. Variational iteration technique for solving a system of nonlinear equations. Optim Lett. 2013, 7, 991–1007. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D. Numerical Analysis; PWS Publishing Company: Boston, MA, USA, 2001. [Google Scholar]
- McNamee, J.M. Numerical Methods for Roots of Polynomials, Part I; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Noor, M.A.; Shah, F.A. A Family of Iterative Schemes for Finding Zeros of Nonlinear Equations having Unknown Multiplicity. Appl. Math. Inf. Sci. 2014, 8, 2367–2373. [Google Scholar] [CrossRef]
- Ahmad, F.; S-Capizzano, S.; Ullah, M.Z.; Al-Fhaid, A.S. A Family of Iterative Methods for Solving Systems of Nonlinear Equations Having Unknown Multiplicity. Algorithms 2016, 9, 5. [Google Scholar] [CrossRef]
Iter. | CCO | ||||
---|---|---|---|---|---|
Iterative method (21) | 6 | ||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
6 | |||||
Iterative method (11) | - | 6 | |||
- | 6 | ||||
- | 6 | ||||
- | 6 |
Iter. | CCO | ||||
---|---|---|---|---|---|
Iterative method (21) | 1 | - | - | ||
7 | |||||
7 | |||||
7 | |||||
Iterative method (11) | - | 1 | - | - | |
- | 20 | ||||
- | 20 | Not converging | - | ||
- | 7 |
Iter. | CCO | ||||
---|---|---|---|---|---|
Iterative method (21) | 12 | ||||
12 | |||||
12 | |||||
12 | |||||
12 | |||||
12 | |||||
Iterative method (11) | - | 1 | - | - | |
- | 12 | ||||
- | 20 | Not converging | - | ||
- | 7 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, F.; Bhutta, T.A.; Shoaib, U.; Zaka Ullah, M.; Alshomrani, A.S.; Ahmad, S.; Ahmad, S. A Preconditioned Iterative Method for Solving Systems of Nonlinear Equations Having Unknown Multiplicity. Algorithms 2017, 10, 17. https://doi.org/10.3390/a10010017
Ahmad F, Bhutta TA, Shoaib U, Zaka Ullah M, Alshomrani AS, Ahmad S, Ahmad S. A Preconditioned Iterative Method for Solving Systems of Nonlinear Equations Having Unknown Multiplicity. Algorithms. 2017; 10(1):17. https://doi.org/10.3390/a10010017
Chicago/Turabian StyleAhmad, Fayyaz, Toseef Akhter Bhutta, Umar Shoaib, Malik Zaka Ullah, Ali Saleh Alshomrani, Shamshad Ahmad, and Shahid Ahmad. 2017. "A Preconditioned Iterative Method for Solving Systems of Nonlinear Equations Having Unknown Multiplicity" Algorithms 10, no. 1: 17. https://doi.org/10.3390/a10010017
APA StyleAhmad, F., Bhutta, T. A., Shoaib, U., Zaka Ullah, M., Alshomrani, A. S., Ahmad, S., & Ahmad, S. (2017). A Preconditioned Iterative Method for Solving Systems of Nonlinear Equations Having Unknown Multiplicity. Algorithms, 10(1), 17. https://doi.org/10.3390/a10010017