Low–Threshold and High Intensity Random Lasing Enhanced by MnCl2
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lawandy, N.M.; Balachandran, R.; Gomes, A.; Sauvain, E. Laser action in strongly scattering media. Nature 1994, 368, 436–438. [Google Scholar] [CrossRef]
- Letokhov, V.S. Generation of light by a scattering medium with negative resonance absorption. Sov. J. Exp. Theor. Phys. 1968, 26, 835. [Google Scholar]
- Wiersma, D.S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367. [Google Scholar] [CrossRef]
- Bashar, S.B.; Suja, M.; Morshed, M.; Gao, F.; Liu, J.L. An Sb-doped p-type ZnO nanowire based random laser diode. Nanotechnology 2016, 27, 065204. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.L.; Feng, G.Y.; Yi, J.Y.; Yao, K.; Deng, G.L.; Zhou, S.H. Effective random laser action in Rhodamine 6G solution with Al nanoparticles. Appl. Opt. 2011, 50, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.H.; Xiao, S.M.; Xu, Z.B.; Liu, J.J.; Sun, X.H.; Drachev, V.; Shalaev, V.M.; Akkus, O.; Kim, Y.L. Random lasing in bone tissue. Opt. Lett. 2010, 35, 1425–1427. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Cao, H.; Burin, A.L.; Ratner, M.A.; Liu, X.; Chang, R.P.H. Investigation of random lasers with resonant feedback. Phys. Rev. A 2001, 64, 063808. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Soukoulis, C. Localized random lasing modes and a path for observing localization. Phys. Rev. E 2002, 65, 025601. [Google Scholar] [CrossRef] [PubMed]
- Azkargorta, J.; Iparraguirre, I.; Barredo-Zuriarrain, M.; García-Revilla, S.; Balda, R.; Fernández, J. Random laser action in Nd:YAG crystal powder. Materials 2016, 9, 369. [Google Scholar] [CrossRef]
- Consoli, A.; Lopez, C. Emission regimes of random lasers with spatially localized feedback. Opt. Express 2016, 24, 10912–10920. [Google Scholar] [CrossRef] [PubMed]
- Consoli, A.; Lopez, C. Decoupling gain and feedback in coherent random lasers: Experiments and simulations. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Cao, H. Lasing in random media. Waves Random Media 2003, 13, R1–R39. [Google Scholar] [CrossRef]
- Cao, H.; Zhao, Y.G.; Ho, S.T.; Seelig, E.W.; Wang, Q.H.; Chang, R.P.H. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281. [Google Scholar] [CrossRef]
- Strangi, G.; Ferjani, S.; Barna, V.; De Luca, A.; Versace, C.; Scaramuzza, N.; Bartolino, R. Random lasing and weak localization of light in dye-doped nematic liquid crystals. Opt. Lett. 2006, 14, 7737–7744. [Google Scholar] [CrossRef]
- Chen, C.W.; Jau, H.C.; Wang, C.T.; Lee, C.H.; Khoo, I.C.; Lin, T.H. Random lasing in blue phase liquid crystals. Opt. Express 2012, 20, 23978–23984. [Google Scholar] [CrossRef] [PubMed]
- Consoli, A.; da Silva, D.M.; Wetter, N.U.; López, C. Large area resonant feedback random lasers based on dye-doped biopolymer films. Opt. Express 2015, 23, 29954–29963. [Google Scholar] [CrossRef] [PubMed]
- Polson, R.C.; Vardeny, Z.V. Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289–1291. [Google Scholar] [CrossRef]
- Ye, L.H.; Kang, J.N.; Yang, H.M.; Liu, B.; Hu, Z.Y.; Zu, Y.B.; Liu, Y.; Cui, Y.P. Enhancement of random lasing assisted by Ag nanoparticle doped dye medium in solidified fiber. Laser Phys. 2016, 26, 045001. [Google Scholar] [CrossRef]
- Redding, B.; Choma, M.A.; Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 2012, 6, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, M.; Conti, C.; Lopez, C. The mode-locking transition of random lasers. Nat. Photonics 2011, 5, 615–617. [Google Scholar] [CrossRef] [Green Version]
- Ismail, W.Z.W.; Liu, G.Z.; Zhang, K.; Goldys, E.M.; Dawe, J.M. Dopamine sensing and measurement using threshold and spectral measurements in random lasers. Opt. Express 2016, 24, A85–A91. [Google Scholar] [CrossRef] [PubMed]
- Kitur, J.; Zhu, G.; Bahoura, M.; Noginov, M. Dependence of the random laser behavior on the concentrations of dye and scatterers. J. Opt. 2010, 12, 024009. [Google Scholar] [CrossRef]
- Song, Q.H.; Liu, L.Y.; Xu, L.; Wu, Y.G.; Wang, Z.S. Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity. Opt. Lett. 2009, 34, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.G.; Fujita, K.; Murai, S.; Matoba, T.; Tanaka, K. Plasmonically controlled lasing resonance with metallic−dielectric core−shell. Nano Lett. 2011, 11, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Fujita, K.; Zong, Y.; Murai, S.; Tanaka, K. Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles. Appl. Phys. Lett. 2008, 92, 201112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Knitter, S.; Liew, S.F.; Omenetto, F.G.; Reinhard, B.M.; Cao, H.; Dal Negro, L. Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers. Appl. Phys. Lett. 2016, 108, 011103. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.N.; Churkin, D.V.; Vatnik, I.D.; Fan, M.Q.; Rao, Y.J. Random distributed feedback Raman fiber laser with polarized pumping. Laser Phys. Lett. 2015, 12, 015101. [Google Scholar] [CrossRef]
- Lee, C.R.; Lin, S.H.; Guo, J.W.; Lin, J.D.; Lin, H.L.; Zheng, Y.C.; Ma, C.L.; Horng, C.T.; Sun, H.Y.; Huang, S.Y. Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell. Opt. Mater. Express 2015, 5, 1469–1481. [Google Scholar] [CrossRef]
- Ismail1, W.Z.W.; Goldys, E.M.; Dawes, J.M. Extended emission wavelength of random dye lasers by exploiting radiative and non-radiative energy transfer. Appl. Phys. B 2016, 122. [Google Scholar] [CrossRef]
- Cerdan, L.; Enciso, E.; Martin, V.; Banuelos, J.; Lopez-Arbeloa, I.; Costela, A.; Garcia-Moreno, I. FRET-assiste dlaser emission in colloidal suspensions of dye-doped latex nanoparticles. Nat. Photonics 2012, 6, 621–626. [Google Scholar] [CrossRef]
- El-Dardiry, R.G.S.; Lagendijk, A. Tuning random lasers by engineered absorption. Appl. Phys. Lett. 2011, 98, 161106. [Google Scholar] [CrossRef]
- Van der Meer, B.W.; Coker, G.; Chen, S.Y. Resonance Energy Transfer: Theory and Data; Wiley: New York, NY, USA, 1994; p. 177. [Google Scholar]
- Zhu, G.; Small, C.E.; Noginov, M.A. Control of gain and amplification in random lasers. J. Opt. Soc. Am. B 2007, 24, 2129–2135. [Google Scholar] [CrossRef]
- Hofstetter, D.; Romano, L.T.; Thornton, R.L.; Bour, D.P.; Johnson, N.M. Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers. Appl. Phys. Lett. 1998, 71, 3200–3202. [Google Scholar] [CrossRef]
- Meng, X.G.; Fujita, K.; Moriguchi, Y.; Zong, Y.H.; Tanaka, K. Metal–dielectric core–shell nanoparticles: Advanced plasmonic architectures towards multiple control of random lasers. Adv. Opt. Mater. 2013, 1, 573–580. [Google Scholar] [CrossRef]
- Hu, Z.J.; Zhang, Q.; Miao, B.; Fu, Q.; Zou, G.; Chen, Y.; Luo, Y.; Zhang, D.G.; Wang, P.; Ming, H.; et al. Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime. Phys. Rev. Lett. 2012, 109, 253901. [Google Scholar] [CrossRef] [PubMed]
Sample | PM597 | PM597-Doped MnCl2 | PM597-Doped PDLC | PM597-Doped PDLC with MnCl2 | PM597-Doped PDLC with MnCl2 | |
---|---|---|---|---|---|---|
Ingredient | ||||||
PM597 (mg) | 1 | 1 | 1 | 1 | 1 | |
Ethanol (mL) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | |
PDLC (mL) | - | - | 0.2 | 0.2 | 0.2 | |
Water-MnCl2 (mL) | - | 0.2 | - | 0.1 | 0.2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Z.; Yang, M.; Deng, L. Low–Threshold and High Intensity Random Lasing Enhanced by MnCl2. Materials 2016, 9, 725. https://doi.org/10.3390/ma9090725
Shang Z, Yang M, Deng L. Low–Threshold and High Intensity Random Lasing Enhanced by MnCl2. Materials. 2016; 9(9):725. https://doi.org/10.3390/ma9090725
Chicago/Turabian StyleShang, Zhenzhen, Mingchao Yang, and Luogen Deng. 2016. "Low–Threshold and High Intensity Random Lasing Enhanced by MnCl2" Materials 9, no. 9: 725. https://doi.org/10.3390/ma9090725
APA StyleShang, Z., Yang, M., & Deng, L. (2016). Low–Threshold and High Intensity Random Lasing Enhanced by MnCl2. Materials, 9(9), 725. https://doi.org/10.3390/ma9090725