Antimicrobial Approaches for Textiles: From Research to Market
Abstract
:1. Introduction
2. Textile Antimicrobial Treatments
2.1. Antimicrobial Agents
- Damage or inhibition of cell wall synthesis, which is critical for the life and survival of bacterial species;
- Inhibition of cell membrane function, which is an important barrier that regulates the intra- and extra-cellular flow of substances, could result in the leakage of vital solutes for the cells’ survival;
- Inhibition of protein synthesis, which is the basis of cell enzymes and structures, consequently leading to the death of the organism or the inhibition of its growth and multiplication;
- Inhibition of nucleic acid synthesis (DNA and RNA) due to the binding of some antimicrobial agents to components involved in the process of DNA or RNA synthesis. This inhibition interferes with normal cellular processes, compromising microbes’ multiplication and survival;
- Inhibition of other metabolic processes, for instance the disruption of the folic acid pathway, which is essential for bacteria to produce precursors important for DNA synthesis.
2.1.1. Quaternary Ammonium Compounds (QACs)
2.1.2. Triclosan
2.1.3. Metals and Metallic Salts
2.1.4. Chitosan
2.1.5. Natural-Based Antimicrobial Agents
2.1.6. Poly(Hexamethylene Biguanide) (PHMB)
2.1.7. Regenerable N-Halamines
2.2. Antimicrobial Textiles by Finishing Treatments with Antimicrobial Agents
2.3. Antimicrobial Textiles by the Incorporation of Antimicrobial Agents in Fibers
3. Environmental and Health Impact of Antimicrobial Agents
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations) and ICAC (Cotton Advisory Committee). A Summary of the World Apparel Fiber Consumption Survey 2005–2008; Food and Agriculture Organization of the United Nation, International Cotton Advisory Committee: Rome, Italy, 2011. [Google Scholar]
- Textile World. Man-Made Fibers Continue to Grow. Available online: http://www.textileworld.com/textile-world/fiber-world/2015/02/man-made-fibers-continue-to-grow/ (accessed on 3 February 2015).
- Collier, B.J.; Tortora, P.G. Understanding Textiles; Prentice Hall: Englewood Cliffs, NJ, USA, 2001. [Google Scholar]
- Hollen, N.R.; Saddler, J.; Langford, A.L. Textiles; Macmillan: New York, NY, USA, 1979. [Google Scholar]
- Singleton, J. The World Textile Industry; Routledge: London, UK, 2013. [Google Scholar]
- Shahidi, S.; Wiener, J. Antimicrobial Agents—Chapter 19: Antibacterial Agents in Textile Industry; InTech: Rijeka, Crotia, 2012. [Google Scholar]
- Gao, Y.; Cranston, R. Recent advances in antimicrobial treatments of textiles. Text. Res. J. 2008, 78, 60–72. [Google Scholar]
- Zanoaga, M.; Tanasa, F. Antimicrobial reagents as functional finishing for textiles intended for biomedical applications. I. Synthetic organic compounds. Chem. J. Mold. 2014, 9, 14–32. [Google Scholar]
- Windler, L.; Height, M.; Nowack, B. Comparative evaluation of antimicrobials for textile applications. Environ. Int. 2013, 53, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Intelligence, T. Demand for Antimicrobial Fibres, Textiles and Apparel Is Set for Strong Growth Performance Apparel Markets. 2014. Available online: http://www.innovationintextiles.com/demand-for-antimicrobial-fibres-textiles-and-apparel-is-set-for-strong-growth/ (accessed on 20 December 2015).
- Bshena, O.; Heunis, T.D.; Dicks, L.M.; Klumperman, B. Antimicrobial fibers: Therapeutic possibilities and recent advances. Future Med. Chem. 2011, 3, 1821–1847. [Google Scholar] [CrossRef] [PubMed]
- Simoncic, B.; Tomsic, B. Structures of novel antimicrobial agents for textiles—A review. Text. Res. J. 2010, 80, 1721–1737. [Google Scholar] [CrossRef]
- Bartels, V. Handbook of Medical Textiles; Elsevier: Cambridge, UK, 2011. [Google Scholar]
- Weinstein, R.A. Controlling antimicrobial resistance in hospitals: Infection control and use of antibiotics. Emerg. Infect. Dis. 2001, 7, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis. BioMed Res. Int. 2014, 2014, 761741. [Google Scholar] [CrossRef] [PubMed]
- Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 2012, 7, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Nwosu, V.C. Antibiotic resistance with particular reference to soil microorganisms. Res. Microbiol. 2001, 152, 421–430. [Google Scholar] [CrossRef]
- Shishoo, R. Plasma Technologies for Textile; Elsevier: Cambridge, UK, 2007. [Google Scholar]
- Michigan State University. Antimicrobial Resistance Learning Site; Michigan State University: East Lansing, MI, USA, 2011. [Google Scholar]
- Glazer, A.N.; Nikaido, H. Microbial Biotechnology: Fundamentals of Applied Microbiology; Cambridge University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Rahman, M.A.; Ahsan, T.; Islam, S. Antibacterial and antifungal properties of the methanol extract from the stem of argyreia argentea. Bangladesh J. Pharmacol. 2010, 5, 41–44. [Google Scholar] [CrossRef]
- Russell, A.D.; Furr, R.; Maillard, J.-Y. Microbial susceptibility and resistance to biocides. ASM News 1997, 63, 481–487. [Google Scholar]
- Kegley, S.; Hill, B.; Orme, S.; Choi, A. Pan Pesticide Database, Pesticide Action Network, North America (San Francisco, CA, 2010); Pesticide Action Network: Oakland, CA, USA, 2010. [Google Scholar]
- Yao, C.; Li, X.; Neoh, K.; Shi, Z.; Kang, E. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J. Membr. Sci. 2008, 320, 259–267. [Google Scholar] [CrossRef]
- Yao, C.; Neoh, K.; Shi, Z.-L.; Kang, E. Antibacterial poly(d,l-lactide)(pdlla) fibrous membranes modified with quaternary ammonium moieties. Chin. J. Polym. Sci. 2010, 28, 581–588. [Google Scholar] [CrossRef]
- Hegstad, K.; Langsrud, S.; Lunestad, B.T.; Scheie, A.A.; Sunde, M.; Yazdankhah, S.P. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb. Drug Resist. 2010, 16, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Sun, G. Antimicrobial finishing of acrilan fabrics with cetylpyridinium chloride. J. Appl. Polym. Sci. 2004, 94, 243–247. [Google Scholar] [CrossRef]
- Cai, Z.; Sun, G. Antimicrobial finishing of acrilan fabrics with cetylpyridinium chloride: Affected properties and structures. J. Appl. Polym. Sci. 2005, 97, 1227–1236. [Google Scholar] [CrossRef]
- Orhan, M.; Kut, D.; Gunesoglu, C. Use of triclosan as antibacterial agent in textiles. Indian J. Fibre Text. Res. 2007, 32, 114–118. [Google Scholar]
- Yazdankhah, S.P.; Scheie, A.A.; Høiby, E.A.; Lunestad, B.-T.; Heir, E.; Fotland, T.Ø.; Naterstad, K.; Kruse, H. Triclosan and antimicrobial resistance in bacteria: An overview. Microb. Drug Resist. 2006, 12, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Imlay, J.A. Silver (i), mercury (ii), cadmium (ii), and zinc (ii) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 3614–3621. [Google Scholar] [CrossRef] [PubMed]
- Palza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Varesano, A.; Vineis, C.; Aluigi, A.; Rombaldoni, F. Antimicrobial polymers for textile products. Sci. Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 3, 99–110. [Google Scholar]
- Chadeau, E.; Brunon, C.; Degraeve, P.; Léonard, D.; Grossiord, C.; Bessueille, F.; Cottaz, A.; Renaud, F.; Ferreira, I.; Darroux, C. Evaluation of antimicrobial activity of a polyhexamethylene biguanide-coated textile by monitoring both bacterial growth (iso 20743/2005 standard) and viability (live/dead baclight kit). J. Food Saf. 2012, 32, 141–151. [Google Scholar] [CrossRef]
- Sciessent. Agion. Available online: http://www.sciessent.com/agion-antimicrobial-technology (accessed on 26 December 2015).
- Chemical, M. Antimicrobial-Alphasan-Additive. Available online: http://millikenchemical.com/milliken-antimicrobial-alphasan-additive/2016 (accessed on 8 January 2016).
- Gettings, R.L.; Triplett, B.L. A new durable antimicrobial finish for textiles. In Book of Papers; American Association of Textile Chemists and Colorists: Research Triangle Park, NC, USA, 1978; pp. 259–261. [Google Scholar]
- Prospector®. Cosmocil CQ™. Available online: https://www.ulprospector.com/en/eu/PersonalCare/Detail/762/30958/Cosmocil-CQ (accessed on 6 January 2016).
- Microban®. Available online: http://www.microban.com/en-uk (accessed on 6 January 2016).
- Lonza. Reputex™ Antimicrobials. Available online: http://www.lonza.com/products-services/industrial-solutions/materials-protection/reputex-antimicrobials.aspx (accessed on 7 January 2016).
- Industries LNC. Cotton-Products. Available online: http://www.lnchemicals.com/cotton-products2.html (accessed on 7 January 2016).
- SANITIZED. Technology for Textiles. Available online: http://www.sanitized.com/technology-for-textiles/2016 (accessed on 8 January 2016).
- Associates TR. Ultra-Fresh. Available online: http://www.ultra-fresh.com (accessed on 8 January 2016).
- Company, TDC. Silvadur. Available online: http://www.dow.com/silvadur (accessed on 8 January 2016).
- PURE Bioscience I. Silvérion 2400. Available online: http://www.purebio.com/products/silverion-2400.htm (accessed on 8 January 2016).
- Jones, R.D.; Jampani, H.B.; Newman, J.L.; Lee, A.S. Triclosan: A review of effectiveness and safety in health care settings. Am. J. Infect. Control 2000, 28, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, R.G. Keeping it fresh. Text. World 2002, 152, 42. [Google Scholar]
- Russell, A. Bacterial adaptation and resistance to antiseptics, disinfectants and preservatives is not a new phenomenon. J. Hosp. Infect. 2004, 57, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Latch, D.E.; Packer, J.L.; Arnold, W.A.; McNeill, K. Photochemical conversion of triclosan to 2, 8-dichlorodibenzo-p-dioxin in aqueous solution. J. Photochem. Photobiol. A Chem. 2003, 158, 63–66. [Google Scholar] [CrossRef]
- Buth, J.M.; Steen, P.O.; Sueper, C.; Blumentritt, D.; Vikesland, P.J.; Arnold, W.A.; McNeill, K. Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores. Environ. Sci. Technol. 2010, 44, 4545–4551. [Google Scholar] [CrossRef] [PubMed]
- Hasan, J.; Crawford, R.J.; Ivanova, E.P. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces 2010, 79, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Farouk, A.; Moussa, S.; Ulbricht, M.; Textor, T. Zno nanoparticles-chitosan composite as antibacterial finish for textiles. Int. J. Carbohydr. Chem. 2012, 2012, 693629. [Google Scholar] [CrossRef]
- NanoHorizons I. Smartsilver. Available online: http://www.smartsilver.com (accessed on 10 January 2016).
- Morais, D.; Rodrigues, M.; Lopes, M.; Coelho, M.; Maurício, A.C.; Gomes, R.; Amorim, I.; Ferraz, M.; Santos, J.; Botelho, C. Biological evaluation of alginate-based hydrogels, with antimicrobial features by ce (iii) incorporation, as vehicles for a bone substitute. J. Mater. Sci. Mater. Med. 2013, 24, 2145–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badawy, M.E.; Rabea, E.I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. 2011, 2011, 460381. [Google Scholar] [CrossRef]
- Wang, X.; Du, Y.; Fan, L.; Liu, H.; Hu, Y. Chitosan-metal complexes as antimicrobial agent: Synthesis, characterization and structure-activity study. Polym. Bull. 2005, 55, 105–113. [Google Scholar] [CrossRef]
- Knittel, D.; Schollmeyer, E. Chitosans for permanent antimicrobial finish on textiles. Lenzing. Ber. 2006, 85, 124–130. [Google Scholar]
- Lim, S.-H.; Hudson, S.M. Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr. Polym. 2004, 56, 227–234. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett. 2013, 2, 1021–1025. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.-G.; Xue, Y.-P.; Liu, C.-S.; Yu, L.-J.; Ji, Q.-X.; Cha, D.S.; Park, H.J. Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Front. Mater. Sci. China 2008, 2, 214–220. [Google Scholar] [CrossRef]
- No, H.K.; Kim, S.H.; Lee, S.H.; Park, N.Y.; Prinyawiwatkul, W. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydr. Polym. 2006, 65, 174–178. [Google Scholar] [CrossRef]
- Shahid, M.; Mohammad, F. Perspectives for natural product based agents derived from industrial plants in textile applications—A review. J. Clean. Prod. 2013, 57, 2–18. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [PubMed]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int. 2013, 2013, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Kheeree, N.; Sangvanich, P.; Puthong, S.; Karnchanatat, A. Antifungal and antiproliferative activities of lectin from the rhizomes of curcuma amarissima roscoe. Appl. Biochem. Biotechnol. 2010, 162, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, M.; Dębek, C.; Olędzka, E.; Kozłowski, R. Polymeric systems of antimicrobial peptides—Strategies and potential applications. Molecules 2013, 18, 14122–14137. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, I.C. Nanobiotechnology: A new strategy to develop non-toxic antimicrobial textiles. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Formatex: Badajoz, Spain, 2010; pp. 407–414. [Google Scholar]
- Rokitskaya, T.I.; Kolodkin, N.I.; Kotova, E.A.; Antonenko, Y.N. Indolicidin action on membrane permeability: Carrier mechanism versus pore formation. Biochim. Biophys. Acta BBA Biomembr. 2011, 1808, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Breidenstein, E.B.; Courvalin, P.; Meziane-Cherif, D. Antimicrobial activity of plectasin nz2114 in combination with cell wall targeting antibiotics against vana-type enterococcus faecalis. Microb. Drug Resist. 2015, 21, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Kyung, K.; Lee, Y. Antimicrobial activities of sulfur compounds derived from s-alk (en) yl-l-cysteine sulfoxides in allium and brassica. Food Rev. Int. 2001, 17, 183–198. [Google Scholar] [CrossRef]
- Bach, S.M.; Fortuna, M.A.; Attarian, R.; de Trimarco, J.T.; Catalán, C.; Av-Gay, Y.; Bach, H. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin. Nat. Prod. Commun. 2011, 6, 163–166. [Google Scholar] [PubMed]
- Mathabe, M.C.; Hussein, A.A.; Nikolova, R.V.; Basson, A.E.; Meyer, J.M.; Lall, N. Antibacterial activities and cytotoxicity of terpenoids isolated from spirostachys africana. J. Ethnopharmacol. 2008, 116, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Petnual, P.; Sangvanich, P.; Karnchanatat, A. A lectin from the rhizomes of turmeric (Curcuma longa L.) and its antifungal, antibacterial, and α-glucosidase inhibitory activities. Food Sci. Biotechnol. 2010, 19, 907–916. [Google Scholar] [CrossRef]
- Orhan, D.D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010, 165, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Contents and antibacterial activity of flavonoids extracted from leaves of psidium guajava. J. Med. Plants Res. 2010, 4, 393–396. [Google Scholar]
- Özçelik, B.; Orhan, D.D.; Özgen, S.; Ergun, F. Antimicrobial activity of flavonoids against extended-spectrum β-lactamase (esβl)-producing Klebsiella pneumoniae. Trop. J. Pharm. Res. 2008, 7, 1151–1157. [Google Scholar] [CrossRef]
- Ignacimuthu, S.; Pavunraj, M.; Duraipandiyan, V.; Raja, N.; Muthu, C. Antibacterial activity of a novel quinone from the leaves of pergularia daemia (forsk.), a traditional medicinal plant. Asian J. Tradit. Med. 2009, 4, 36–40. [Google Scholar]
- Singh, D.; Verma, N.; Raghuwanshi, S.; Shukla, P.; Kulshreshtha, D. Antifungal anthraquinones from saprosma fragrans. Bioorg. Med. Chem. Lett. 2006, 16, 4512–4514. [Google Scholar] [CrossRef] [PubMed]
- Engels, C.; Knodler, M.; Zhao, Y.-Y.; Carle, R.; Gänzle, M.G.; Schieber, A. Antimicrobial activity of gallotannins isolated from mango (mangifera indica l.) kernels. J. Agric. Food Chem. 2009, 57, 7712–7718. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Saleem, M.; Nazir, M.; Ali, M.S.; Hussain, H.; Lee, Y.S.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep. 2010, 27, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Hui, F.; Debiemme-Chouvy, C. Antimicrobial N-halamine polymers and coatings: A review of their synthesis, characterization, and applications. Biomacromolecules 2013, 14, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Kou, L.; Kocer, H.B.; Zhu, C.; Worley, S.; Broughton, R.; Huang, T. Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 711–716. [Google Scholar] [CrossRef]
- Cao, Z.; Sun, Y. N-halamine-based chitosan: Preparation, characterization, and antimicrobial function. J. Biomed. Mater. Res. A 2008, 85, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Aflori, M.; Drobotă, M.; Ţîmpu, D.; Bărboiu, V. Amine functionality of poly(ethylene terepthalate) films surfaces induced by chemical and rf plasma treatments. In Proceedings of the 28th ICPIG (International Conference on Phenomena in Ionized Gases), Prague, Czech Republic, 15–20 July 2007; pp. 727–730.
- Wei, Q. Surface Modification of Textiles; Elsevier: Cambridge, UK, 2009. [Google Scholar]
- Davis, R.; El-Shafei, A.; Hauser, P. Use of atmospheric pressure plasma to confer durable water repellent functionality and antimicrobial functionality on cotton/polyester blend. Surf. Coat. Technol. 2011, 205, 4791–4797. [Google Scholar] [CrossRef]
- Lam, Y.; Kan, C.; Yuen, C. A study of metal oxide on antimicrobial effect of plasma pre-treated cotton fabric. Fibers Polym. 2013, 14, 52–58. [Google Scholar] [CrossRef]
- Caillier, L.; de Givenchy, E.T.; Levy, R.; Vandenberghe, Y.; Géribaldi, S.; Guittard, F. Synthesis and antimicrobial properties of polymerizable quaternary ammoniums. Eur. J. Med. Chem. 2009, 44, 3201–3208. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wu, D.; Fu, R. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React. Funct. Polym. 2007, 67, 355–366. [Google Scholar] [CrossRef]
- Nalwa, H.S. Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites; American Scientific Publishers: Los Angeles, CA, USA, 2003. [Google Scholar]
- Son, Y.A.; Sun, G. Durable antimicrobial nylon 66 fabrics: Ionic interactions with quaternary ammonium salts. J. Appl. Polym. Sci. 2003, 90, 2194–2199. [Google Scholar] [CrossRef]
- Kawabata, A.; Taylor, J.A. Effect of reactive dyes upon the uptake and antibacterial action of poly (hexamethylene biguanide) on cotton. Part 1: Effect of bis (monochlorotriazinyl) dyes. Color. Technol. 2004, 120, 213–219. [Google Scholar] [CrossRef]
- Kawabata, A.; Taylor, J. The effect of reactive dyes upon the uptake and anti bacterial action of poly (hexamethylene biguanide) on cotton. Part 2: Uptake of poly (hexamethylene biguanide) on cotton dyed with β-sulphatoethylsulphonyl reactive dyes. Dyes Pigments 2006, 68, 197–204. [Google Scholar] [CrossRef]
- Blackburn, R.S.; Harvey, A.; Kettle, L.L.; Payne, J.D.; Russell, S.J. Sorption of poly (hexamethylenebiguanide) on cellulose: Mechanism of binding and molecular recognition. Langmuir 2006, 22, 5636–5644. [Google Scholar] [CrossRef] [PubMed]
- Badrossamay, M.R.; Sun, G. Acyclic halamine polypropylene polymer: Effect of monomer structure on grafting efficiency, stability and biocidal activities. React. Funct. Polym. 2008, 68, 1636–1645. [Google Scholar] [CrossRef]
- Ulman, K.N.; Shukla, S.R. Admicellar polymerization and its application in textiles. Adv. Polym. Technol. 2015. [Google Scholar] [CrossRef]
- Cerkez, I.; Kocer, H.B.; Worley, S.; Broughton, R.; Huang, T. N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 2011, 27, 4091–4097. [Google Scholar] [CrossRef] [PubMed]
- Carré, A.; Mittal, K.L. Surface and Interfacial Aspects of Cell Adhesion; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Sedlarik, V. Antimicrobial modifications of polymers. In Biodegradation-Life of Science; InTech: Hampshire, UK, 2013; pp. 187–204. [Google Scholar]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.; Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostruct. Chem. 2016, 1–7. [Google Scholar] [CrossRef]
- Lagaron, J.M.; Ocio, M.J.; Lopez-Rubio, A. Antimicrobial Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Nephew, S. Pro-Acticoat. Available online: http://feridas.smith-nephew.pt/pro-acticoat.html (accessed on 11 January 2016).
- Sinterama. Bactershield®. Available online: http://www.sinterama.com/site/app01/lng/eng/public.nsf/content?openagent&grp=3&act=prd&sec=3&psp=WCNBREFS_000009&imp= (accessed on 20 January 2016).
- Trevira. Trevira Bioactive. Available online: http://www.trevira.com/en/textiles-made-from-trevira/brands/trevira-bioactive.html (accessed on 20 January 2016).
- Crabyon. Available online: http://www.swicofil.com/crabyon.html (accessed on 21 January 2016).
- Toyobo. Products. Available online: http://www.toyobo-global.com/products/#?tab=3 (accessed on 21 January 2016).
- Medtronic. Kendall™ AMD Antimicrobial foam Dressings. Available online: http://www.kendallamdfoam.com/pages.aspx?page=HowItWorks (accessed on 22 January 2016).
- Seacell. Available online: http://www.smartfiber.info/seacell (accessed on 22 January 2016).
- Slater, K. Environmental Impact of Textiles: Production, Processes and Protection; Woodhead Publishing: Cambridge, UK, 2003; Volume 27. [Google Scholar]
- United States Environmental Protection Agency. Reregistration Eligibility Decision for Triclosan. 2008. Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/2340red.pdf (accessed on 22 January 2016). [Google Scholar]
- Eckelman, M.J.; Graedel, T. Silver emissions and their environmental impacts: A multilevel assessment. Environ. Sci. Technol. 2007, 41, 6283–6289. [Google Scholar] [CrossRef] [PubMed]
- Kan, C.-W. A Novel Green Treatment for Textiles: Plasma Treatment as a Sustainable Technology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kasiri, M.B.; Safapour, S. Natural dyes and antimicrobials for green treatment of textiles. Environ. Chem. Lett. 2014, 12, 1–13. [Google Scholar] [CrossRef]
- Kalia, S.; Thakur, K.; Celli, A.; Kiechel, M.A.; Schauer, C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. J. Environ. Chem. Eng. 2013, 1, 97–112. [Google Scholar] [CrossRef]
- Shahid, M.; Mohammad, F. Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—A review. Ind. Eng. Chem. Res. 2013, 52, 5245–5260. [Google Scholar] [CrossRef]
- Hu, S.; Hsieh, Y.-L. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydr. Polym. 2015, 131, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, M.F.; Ayyoob, M.; Asad, M.; Shah, S.N.H. Assessment of eco-friendly natural antimicrobial textile finish extracted from aloe vera and neem plants. FIBRES TEXTILES East. Eur. 2015, 23, 120–123. [Google Scholar]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correia, S.; Igrejas, G. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef]
- Randall, C.P.; Gupta, A.; Jackson, N.; Busse, D.; O’Neill, A.J. Silver resistance in gram-negative bacteria: A dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother. 2015, 70, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Heuer, O.E.; Kruse, H.; Grave, K.; Collignon, P.; Karunasagar, I.; Angulo, F.J. Human health consequences of use of antimicrobial agents in aquaculture. Clin. Infect. Dis. 2009, 49, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Lansdown, A. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006, 33, 17–34. [Google Scholar] [PubMed]
- Wollina, U.; Abdel-Naser, M.; Verma, S. Skin physiology and textiles–consideration of basic interactions. Curr. Probl. Dermatol. 2006, 33, 1–16. [Google Scholar] [PubMed]
Biocide | Chemical Structure | Action Modes | Fibers |
---|---|---|---|
QACs | (Example: monoquaternary ammonium salt: alkyltrimethylammonium bromide) | •Damage cell membranes; •Denature proteins; •Inhibit DNA production, avoiding multiplication [7,12,26]. | Cotton Polyester Nylon Wool |
Triclosan | Blocks lipid biosynthesis, affecting the integrity of cell membranes [7,29,30]. | Polyester Nylon Polypropylene Cellulose acetate Acrylic | |
Metals and metallic salts | Examples: TiO2 and ZnO | Generate reactive oxygen species, damaging cellular proteins, lipids and DNA [31,32]. | Cotton Wool Polyester Nylon |
Chitosan | •Low Mw: inhibits synthesis of mRNA, preventing protein synthesis [12,33]; •High Mw: causes leakage of intracellular substances or blocks the transport of essential solutes into the cell [7,33]. | Cotton Polyester Wool | |
PHMB | Interacts with membrane phospholipids, resulting in its disruption and the lethal leakage of cytoplasmic materials [7,34,35]. | Cotton Polyester Nylon | |
N-halamines | (Example: N-chloro-2,2,6,6-tetramethyl-4-piperidinyl methacrylate) | Precludes the cell enzymatic and metabolic processes, causing the consequent microorganism destruction [8,12]. | Cotton Polyester Nylon Wool |
Product Name | Company | Description |
---|---|---|
agion® [36] | Sciessent | Additive based on silver and zeolite |
AlphaSan® [37] | Milliken Chemical | Additive based on silver |
BioGuard® [38] | AEGIS Microbe Shield™ | Finishing agent based on 3-trimethoxysilylpropyldimethyloctadecyl ammonium chloride |
Biozac ZS [12] | Zschimmer & Schwarz Mohsdorf GmbH & CoKG | Finishing agent based on PHMB |
Cosmocil CQ™ [39] | Lonza | Additive based on polyaminopropyl biguanide |
Eosy® [12] | Unitika | Finishing agent based on chitosan |
Irgaguard® 1000 [12] | BASF (Ciba) | Finishing agent based on triclosan |
Irgasan [12] | Sigma Aldrich | Finishing agent based on triclosan |
Microban® [40] | Microban International | Agent based on triclosan |
Reputex™ [41] | Lonza | Finishing agent based on PHMB |
Sanigard KC [42] | L.N.Chemical Industries | Finishing agent belonging to the QAC group |
Saniguard Nano-ZN [42] | L.N.Chemical Industries | Finishing solution based on an aqueous nano-dispersion of zinc oxide |
Sanitized® [43] | SANITIZED | Finishing agent based on 3-trimethoxysilylpropyldimethyltetradecyl ammonium chloride |
Silpure® [44] | Thomson Research Associates | Finishing agent based on fine silver particles |
Silvadur™ [45] | The Dow Chemical Company | Interpenetrating polymer network with silver ions |
SmartSilver® [12] | Nanohorizon Inc. | Agent based on silver nanoparticles |
Silvérion 2400 [46] | PURE Bioscience, Inc. | Agent based on a stabilized silver complex |
Plant-Based Antimicrobial Agents | Chemical Structure | Antimicrobial Spectrum |
---|---|---|
Alkaloids | ||
Terpenoids [74,75] | - Staphylococcus aureus - Pseudomonas aeruginosa - Vibrio cholera | |
Lectins and Polypeptides [68,76] | - Staphylococcus aureus - Bacillus subtilis - Escherichia coli - Pseudomonas aeruginosa - Candida albicans | |
Phenolics and polyphenols | ||
Flavonoids [77,78,79] | - Klebsiella pneumonia - Salmonella enterica - Pseudomonas aeruginosa - Staphylococcus aureus - Escherichia coli - Acinetobacter baumannii | |
Quinones [80,81] | - Staphylococcus aureus - Bacillus subtilis - Pseudomonas aeruginosa | |
Tannins [82,83] | - Bacillus cereus - Listeria monocytogenes - Staphylococcus aureus - Salmonella enterica | |
Coumarins [66,67,84] | - Listeria monocytogenes - Staphylococcus aureus - Escherichia coli - Vibrio parahaemolyticus |
Product Name | Company | Description |
---|---|---|
ACTICOAT™ [107] | Smith & Nephew | Textile structure composed of 3 layers: 2 layers of polyethylene mesh coated with high density nanocrystalline silver; 1 layer of rayon and polyester |
Amicor/Amicor Plus [12] | Acordis, Ltd. | Acrylic fibers containing triclosan or a combination of triclosan and tolnaftate |
Bactekiller® [12] | Fuji Chemical Industries, Ltd. | Fibers containing metal ions |
Bactershield® [108] | Sinterama | Polyester yarn containing a bacteriostatic agent |
Bioactive® [109] | Trevira | Polyester fibers containing silver |
BiofresH™ [12] | Sterling Fibers, Inc. | Acrylic fibers containing triclosan |
Chitopoly® [12] | Fuji-Spinning | Fiber made by kneading chitosan into polynosic fiber |
Crabyon® [110] | SWICOFIL AG | Composite fiber of chitin/chitosan and cellulose viscose |
FeelFresh® [111] | Toyobo | Acrylic fibers endowed with antibacterial metal ions |
Kendall™ [112] | Medtronic | Textile foam dressing containing PHMBs |
Microfresh® [7] | O’Mara, Inc. | Polyester yarns containing silver particles |
Rhovyl’As® [12] | Rhovyl | Fibers containing triclosan |
SeaCell® active [113] | Smartfiber AG | SeaCell fibers (based on cellulose) enriched with silver ions |
Silfresh® [7] | Novaceta | Cellulose acetate yarn containing triclosan |
SoleFresh® [7] | O’Mara, Inc. | Polyester yarns containing silver particles |
Thunderon® [12] | Nihon Sanmo Dyeing Company, Ltd. | Acrylic fibers containing copper ions |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, D.S.; Guedes, R.M.; Lopes, M.A. Antimicrobial Approaches for Textiles: From Research to Market. Materials 2016, 9, 498. https://doi.org/10.3390/ma9060498
Morais DS, Guedes RM, Lopes MA. Antimicrobial Approaches for Textiles: From Research to Market. Materials. 2016; 9(6):498. https://doi.org/10.3390/ma9060498
Chicago/Turabian StyleMorais, Diana Santos, Rui Miranda Guedes, and Maria Ascensão Lopes. 2016. "Antimicrobial Approaches for Textiles: From Research to Market" Materials 9, no. 6: 498. https://doi.org/10.3390/ma9060498