Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Constituent Materials
2.2. Mix Proportions of Concretes
2.3. Preparation and Testing of Concretes
3. ANN for Predicting Compressive Strength of SCHSC
4. Test Results and Modeling
4.1. Compressive Strength of Concretes
4.2. ANN Model Development for Compressive Strength of SCHSC and Analysis
4.2.1. Training of the ANN Model
4.2.2. Testing of the ANN Model
5. Conclusions
- The average 28-day compressive strength of different SCHSCs was in the range of 52.3–74.2 MPa which fulfilled the requirement for high-strength concrete. The compressive strength of the concrete was influenced by its mix parameters (particularly the W/B ratio) and mix proportions (particularly the cement and POFA contents). The highest compressive strength was obtained for the concrete produced with a W/B ratio of 0.25 and 20% POFA.
- A model has been developed using an ANN to predict the 28-day compressive strength of SCHSC containing POFA. The key information regarding the mix ingredients of concrete was used in choosing the neurons for the ANN. A multilayered feed-forward neural network with a back propagation algorithm was used to develop the model. While developing the ANN model, 70% of the mix proportioning and strength data were used in the training phase whereas 30% of the data were used in testing phase.
- The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength which shows the higher degree of accuracy of the created network pattern.
- The derived ANN model predicted the compressive strength of SCHSC containing POFA with a minimum error. The mean absolute error as well as the mean relative error was significantly low, as observed during the testing process of the model.
- The overall findings of the present study indicate that the compressive strength of SCHSC incorporating POFA can be efficiently predicted by using an ANN.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
C | Cement |
CA | Coarse aggregate |
FA | Fine aggregate |
HRWR | High-range water reducer |
SCHSC | Self-consolidating high-strength concrete |
SCM | Supplementary cementing material |
POFA | Palm oil fuel ash |
VMA | Viscosity modifying admixture |
W | Water |
W/B | Water-to-binder ratio |
References
- Chandara, C. Study of Pozzolanic Reaction and Fluidity of Blended Cement Containing Treated Palm Oil Fuel Ash as Mineral Admixture. Ph.D. Thesis, School of Materials and Minerals Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia, 2011. [Google Scholar]
- Aminudin, E.B. Engineering Properties of POFA Cement Brick. Master’s Thesis, Universiti Teknologi Malaysia, Skudai, Malaysia, 2010. [Google Scholar]
- Tonnayopas, D.; Nilrat, F.; Putto, K.; Tantiwitayawanich, J. Effect of oil palm fiber fuel ash on compressive strength of hardening concrete. In Proceedings of the 4th Thailand Materials Science and Engineering, Pathumthani, Thailand, 31 March–1 April 2006; pp. 1–3.
- Kanadasan, J.; Ahmad Fauzi, A.F.; Abdul Razak, H.; Selliah, P.; Subramaniam, V.; Yusoff, S. Feasibility studies of palm oil mill waste aggregates for the construction industry. Materials 2015, 8, 6508–6530. [Google Scholar] [CrossRef]
- Kanadasan, J.; Abdul Razak, H. Utilization of palm oil clinker as cement replacement material. Materials 2015, 8, 8817–8838. [Google Scholar] [CrossRef]
- Abdullah, K.; Hussin, M.W.; Zakaria, F.; Muhamad, R.; Hamid, Z.A. POFA: A potential partial cement replacement material in aerated concrete. In Proceedings of the 6th Asia-Pacific Conference on Structural Engineering and Construction (APSEC 2006), Kuala Lumpur, Malaysia, 5–6 September 2006; pp. B132–B140.
- Sata, V.; Jaturapitakkul, C.; Kiattikomol, K. Utilization of palm oil fuel ash in high-strength concrete. J. Mater. Civ. Eng. 2004, 16, 623–628. [Google Scholar] [CrossRef]
- Sumadi, S.R.; Hussin, M.W. Palm oil fuel ash (POFA) as a future partial cement replacement material in housing construction. J. Ferrocem. 1995, 25, 25–34. [Google Scholar]
- Safiuddin, M.; Salam, M.A.; Jumaat, M.Z. Utilization of palm oil fuel ash in concrete: A review. J. Civ. Eng. Manag. 2011, 17, 234–247. [Google Scholar] [CrossRef]
- Karim, M.R.; Hossain, M.M.; Khan, M.N.N.; Zain, M.F.M.; Jamil, M.; Lai, F.C. On the utilization of pozzolanic wastes as an alternative resource of cement. Materials 2014, 7, 7809–7827. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Behnia, A.; Alengaram, U.J.; Jumaat, M.Z. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Mater. Des. 2015, 59, 532–539. [Google Scholar] [CrossRef]
- Kabir, S.M.A.; Alengaram, U.J.; Jumaat, M.Z.; Sharmin, A.; Islam, A. Influence of molarity and chemical composition on the development of compressive strength in POFA based geopolymer mortar. Adv. Mater. Sci. Eng. 2015, 2015, 15. [Google Scholar] [CrossRef]
- Tantawy, M.M. Artificial neural network for prediction and control of blasting vibrations in Assiut (Egypt) limestone quarry. Int. J. Rock Mech. Min. Sci. 2009, 46, 426–431. [Google Scholar]
- Adeli, H. Neural networks in civil engineering: 1989–2000. Comput. Aided Civ. Infrastruct. Eng. 2001, 16, 126–142. [Google Scholar] [CrossRef]
- Adeli, H.; Yeh, C. Perceptron learning in engineering design. Comput. Aided Civ. Infrastruct. Eng. 1989, 4, 247–256. [Google Scholar] [CrossRef]
- Flood, I.; Kartam, N. Neural networks in civil engineering. I: Principles and understanding. J. Comput. Civ. Eng. 1994, 8, 131–148. [Google Scholar] [CrossRef]
- Flood, I.; Kartam, N. Neural networks in civil engineering. II: Systems and applications. J. Comput. Civ. Eng. 1994, 8, 149–162. [Google Scholar] [CrossRef]
- Pala, M.; Özbay, E.; Öztaş, A.; Yuce, M.I. Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 2007, 21, 384–394. [Google Scholar] [CrossRef]
- Dahou, Z.; Sbartai, Z.M.; Castel, A.; Ghomari, F. Artificial neural network model for steel-concrete bond prediction. Eng. Struct. 2009, 31, 1724–1733. [Google Scholar] [CrossRef]
- Garzón-Roca, J.; Marco, C.O.; Adam, J.M. Compressive strength of masonry made of clay bricks and cement mortar: Estimation based on neural networks and fuzzy logic. Eng. Struct. 2013, 48, 21–27. [Google Scholar] [CrossRef]
- Garzón-Roca, J.; Adam, J.M.; Sandoval, C.; Roca, P. Estimation of the axial behaviour of masonry walls based on artificial neural networks. Comput. Struct. 2013, 125, 145–152. [Google Scholar] [CrossRef]
- Aguilar, V.; Sandoval, C.; Adam, J.M.; Garzón-Roca, J.; Veldebenito, G. Prediction of the shear strength of reinforced masonry walls using a large experimental database and artificial neural networks. Struct. Infrastruct. Eng. 2016. [Google Scholar] [CrossRef]
- Asteris, P.G.; Tsaris, A.K.; Cavaleri, L.; Repapis, C.C.; Papalou, A.; Trapani, F.D.; Karypidis, D.F. Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Comput. Intell. Neurosci. 2016, 12, 5104907. [Google Scholar] [CrossRef] [PubMed]
- Plevris, V.; Asteris, P.G. Modelling the masonry failure surface under biaxial compressive stress using neural networks. Constr. Build. Mater. 2014, 55, 447–461. [Google Scholar] [CrossRef]
- Asteris, P.G.; Plevris, V. Anisotropic masonry failure criterion using artificial neural networks. Neural Comput. Appl. 2016. [Google Scholar] [CrossRef]
- Yeh, I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Kasperkiewicz, J.; Racz, J.; Dubrawski, A. HPC strength prediction using artificial neural network. J. Comput. Civ. Eng. 1995, 9, 279–284. [Google Scholar] [CrossRef]
- Lai, S.; Serra, M. Concrete strength prediction by means of neural network. Constr. Build. Mater. 1997, 11, 93–98. [Google Scholar] [CrossRef]
- Lee, S.C. Prediction of concrete strength using artificial neural networks. Eng. Struct. 2003, 25, 849–857. [Google Scholar] [CrossRef]
- Öztaş, A.; Pala, M.; Özbay, E.A.; Kanca, E.A.; Çağlar, N.; Bhatti, M.A. Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 2006, 20, 769–775. [Google Scholar] [CrossRef]
- Hakim, S.J.S.; Noorzaei, J.; Jaafar, M.S.; Jameel, M.; Mohammadhassani, M. Application of artificial neural networks to predict compressive strength of high strength concrete. Int. J. Phys. Sci. 2011, 6, 975–981. [Google Scholar]
- Dias, W.P.S.; Pooliyadda, S.P. Neural networks for predicting properties of concretes with admixtures. Constr. Build. Mater. 2001, 15, 371–379. [Google Scholar] [CrossRef]
- Bai, J.; Wild, S.; Ware, J.A.; Sabir, B.B. Using neural networks to predict workability of concrete incorporating metakaolin and fly ash. Adv. Eng. Softw. 2003, 34, 663–669. [Google Scholar] [CrossRef]
- Topçu, I.B.; Sarıdemir, M. Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Constr. Build. Mater. 2008, 22, 532–540. [Google Scholar] [CrossRef]
- Adhikary, B.B.; Mutsuyoshi, H. Prediction of shear strength of steel fiber RC beams using neural networks. Constr. Build. Mater. 2006, 20, 801–811. [Google Scholar] [CrossRef]
- Kumar, S.; Barai, S.V. Neural networks modeling of shear strength of SFRC corbels without stirrups. Appl. Soft Comput. 2010, 10, 135–148. [Google Scholar] [CrossRef]
- Parichatprecha, R.; Nimityongskul, P. Analysis of durability of high performance concrete using artificial neural networks. Constr. Build. Mater. 2009, 23, 910–917. [Google Scholar] [CrossRef]
- ACI. 211.4R-08: Guide for selecting proportions for high-strength concrete using Portland cement and other cementitious materials. In ACI Manual of Concrete Practice, Part 1; American Concrete Institute: Farmington Hills, MI, USA, 2008.
- Safiuddin, M. Development of Self-Consolidating High Performance Concrete Incorporating Rice Husk Ash. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2008. [Google Scholar]
- Standard Test Method for Slump Flow of Self-Consolidating Concrete; ASTM C 1611/C 1611M-09a; ASTM International: West Conshohocken, PA, USA, 2009.
- Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM C 39/C 39M-09; ASTM International: West Conshohocken, PA, USA, 2009.
- Ghaboussi, J.; Garrett, J.H.; Wu, X. Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech. 1989, 117, 132–153. [Google Scholar] [CrossRef]
- Topçu, I.B.; Sarıdemir, M. Prediction of compressive strength of concrete containing fly ash using artificial neural network and fuzzy logic. Comput. Mater. Sci. 2008, 41, 305–311. [Google Scholar] [CrossRef]
- Tavakkol, S.; Alapour, F.; Kazemian, A.; Hasaninejad, A.; Ghanbari, A.; Ramezanianpour, A.A. Prediction of lightweight concrete strength by categorized regression, MLR and ANN. Comput. Concr. 2013, 12, 151–167. [Google Scholar] [CrossRef]
- Lessard, M.; Baalbaki, M.; Aitcin, P.-C. Mix design of air entrained high performance concrete. In Concrete under Severe Conditions: Environment and Loading; E & FN Spon: London, UK, 1995; Volume 2, pp. 1025–1034. [Google Scholar]
- Salam, M.A. Development of High-Strength Self-Consolidating Concrete Incorporating Palm Oil Fuel Ash as a Supplementary Cementing Material. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2012. [Google Scholar]
- Sata, V.; Jaturapitakkul, C.; Rattanashotinunt, C. Compressive strength and heat evolution of concretes containing palm oil fuel ash. J. Mater. Civ. Eng. 2007, 22, 1033–1038. [Google Scholar] [CrossRef]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef]
Coarse Aggregate (CA): | |
---|---|
Relative density (specific gravity) | 2.62 |
Maximum size (mm) | 19 |
Absorption (wt %) | 0.55 |
Moisture content (wt %) | 0.27 |
Fine Aggregate (FA): | |
Relative density (specific gravity) | 2.69 |
Maximum size (mm) | 4.75 |
Absorption (wt %) | 1.32 |
Moisture content (wt %) | 0.31 |
Ordinary Portland Cement (OPC): | |
Relative density (specific gravity) | 3.16 |
Median particle size, d50 (µm) | 14.6 |
Fraction passing 45-µm sieve (wt %) | 91.5 |
Specific surface area, Blaine (m2/kg) | 351 |
Specific surface area, BET (m2/kg) | 3046 |
Palm Oil Fuel Ash (POFA): | |
Relative density (specific gravity) | 2.48 |
Median particle size, d50 (µm) | 9.5 |
Fraction passing 45 µm sieve (wt %) | 95 |
Specific surface area, Blaine (m2/kg) | 775 |
Specific surface area, BET (m2/kg) | 4103 |
High-Range Water Reducer (HRWR): | |
Relative density (specific gravity) | 1.05 |
Solid content (wt %) | 30 |
Viscosity Modifying Admixture (VMA): | |
Relative density (specific gravity) | 1.01 |
Solid content (wt %) | 20 |
Concrete Designation | W/B Ratio | CA | FA | OPC | POFA | Water | HRWR | VMA | |
---|---|---|---|---|---|---|---|---|---|
(kg/m3) | (kg/m3) | (kg/m3) | (% B) | (kg/m3) | (kg/m3) | (kg/m3) | (kg/m3) | ||
C25P0 | 0.25 | 767.1 | 762.2 | 705.9 | 0 | 0 | 178.3 | 12.10 | 0 |
C25P10 | 0.25 | 759.0 | 754.24 | 635.3 | 10 | 70.6 | 177.9 | 12.40 | 0 |
C25P20 | 0.25 | 750.9 | 746.1 | 564.7 | 20 | 141.2 | 177.9 | 12.60 | 1.76 |
C25P25 | 0.25 | 746.8 | 742.1 | 529.4 | 25 | 176.5 | 177.0 | 13.49 | 3.53 |
C25P30 | 0.25 | 742.8 | 738.1 | 494.1 | 30 | 211.8 | 176.5 | 14.11 | 5.29 |
C30P0 | 0.30 | 816.3 | 811.1 | 588.2 | 0 | 0 | 181.7 | 8.40 | 0 |
C30P10 | 0.30 | 809.6 | 804.4 | 529.4 | 10 | 58.8 | 181.3 | 8.82 | 0 |
C30P20 | 0.30 | 802.8 | 797.7 | 470.6 | 20 | 117.6 | 180.3 | 10.08 | 0 |
C30P25 | 0.30 | 799.4 | 794.4 | 441.2 | 25 | 147.1 | 179.9 | 10.50 | 1.47 |
C30P30 | 0.30 | 796.1 | 791.0 | 411.8 | 30 | 176.5 | 179.7 | 10.78 | 2.94 |
C35P0 | 0.35 | 851.5 | 846.1 | 504.2 | 0 | 0 | 184.2 | 5.70 | 0 |
C35P10 | 0.35 | 845.7 | 840.3 | 453.8 | 10 | 50.4 | 183.9 | 5.90 | 0 |
C35P20 | 0.35 | 839.9 | 834.6 | 403.4 | 20 | 100.8 | 183.7 | 6.05 | 0 |
C35P25 | 0.35 | 837.0 | 831.7 | 378.2 | 25 | 126.1 | 182.9 | 7.20 | 0 |
C35P30 | 0.35 | 834.1 | 828.8 | 352.9 | 30 | 151.3 | 182.6 | 7.56 | 0 |
C40P0 | 0.40 | 877.8 | 872.3 | 441.2 | 0 | 0 | 185.6 | 4.20 | 0 |
C40P10 | 0.40 | 872.8 | 867.3 | 397.1 | 10 | 44.1 | 185.4 | 4.41 | 0 |
C40P20 | 0.40 | 886.8 | 862.2 | 352.9 | 20 | 88.2 | 184.9 | 5.04 | 0 |
C40P25 | 0.40 | 865.2 | 859.7 | 330.9 | 25 | 110.3 | 184.8 | 5.15 | 1.10 |
C40P30 | 0.40 | 862.7 | 857.2 | 308.8 | 30 | 132.4 | 184.2 | 5.88 | 2.21 |
Concrete Designation | W/B Ratio | POFA (% B) | Average Compressive Strength (MPa) |
---|---|---|---|
C25P0 | 0.25 | 0 | 70.9 |
C25P10 | 0.25 | 10 | 72.9 |
C25P20 | 0.25 | 20 | 74.2 |
C25P25 | 0.25 | 25 | 68.2 |
C25P30 | 0.25 | 30 | 65.9 |
C30P0 | 0.30 | 0 | 67.6 |
C30P10 | 0.30 | 10 | 69.3 |
C30P20 | 0.30 | 20 | 71.3 |
C30P25 | 0.30 | 25 | 65.5 |
C30P30 | 0.30 | 30 | 63.1 |
C35P0 | 0.35 | 0 | 61.3 |
C35P10 | 0.35 | 10 | 62.8 |
C35P20 | 0.35 | 20 | 64.2 |
C35P25 | 0.35 | 25 | 58.8 |
C35P30 | 0.35 | 30 | 57.7 |
C40P0 | 0.40 | 0 | 56.2 |
C40P10 | 0.40 | 10 | 57.9 |
C40P20 | 0.40 | 20 | 58.2 |
C40P25 | 0.40 | 25 | 54.1 |
C40P30 | 0.40 | 30 | 52.3 |
Input/Output Variables | Ranges of Data | |
---|---|---|
Minimum | Maximum | |
Inputs: | ||
Coarse aggregate (kg/m3) | 742.8 | 877.8 |
Fine aggregate (kg/m3) | 738.1 | 872.3 |
Ordinary portland cement (kg/m3) | 308.8 | 705.9 |
Palm oil fuel ash (kg/m3) | 0 | 211.8 |
Water (kg/m3) | 176.5 | 185.6 |
High-range water reducer (kg/m3) | 4.20 | 14.11 |
Viscosity modifying admixture (kg/m3) | 0 | 5.29 |
Output: | ||
Compressive strength (MPa) | 52.3 | 74.2 |
Concrete Type | W/B Ratio | Constituent Materials (kg/m3) | Compressive Strength (MPa) | ||||||
---|---|---|---|---|---|---|---|---|---|
CA | FA | OPC | POFA | W | HRWR | VMA | |||
C25P0 | 0.25 | 767.1 | 762.2 | 705.9 | 0.0 | 178.3 | 12.10 | 0.00 | 70.2 |
0.25 | 767.1 | 762.2 | 705.9 | 0.0 | 178.3 | 12.10 | 0.00 | 70.4 | |
0.25 | 767.1 | 762.2 | 705.9 | 0.0 | 178.3 | 12.10 | 0.00 | 72.1 | |
C25P10 | 0.25 | 759.0 | 754.2 | 635.3 | 70.6 | 177.9 | 12.40 | 0.00 | 73.6 |
0.25 | 759.0 | 754.2 | 635.3 | 70.6 | 177.9 | 12.40 | 0.00 | 72.9 | |
0.25 | 759.0 | 754.2 | 635.3 | 70.6 | 177.9 | 12.40 | 0.00 | 72.1 | |
C25P20 | 0.25 | 750.9 | 746.1 | 564.7 | 141.2 | 177.7 | 12.60 | 1.76 | 73.1 |
0.25 | 750.9 | 746.1 | 564.7 | 141.2 | 177.7 | 12.60 | 1.76 | 74.5 | |
0.25 | 750.9 | 746.1 | 564.7 | 141.2 | 177.7 | 12.60 | 1.76 | 75.0 | |
C25P25 | 0.25 | 746.8 | 742.1 | 529.4 | 176.5 | 177.0 | 13.49 | 3.53 | 68.3 |
0.25 | 746.8 | 742.1 | 529.4 | 176.5 | 177.0 | 13.49 | 3.53 | 67.3 | |
0.25 | 746.8 | 742.1 | 529.4 | 176.5 | 177.0 | 13.49 | 3.53 | 69.1 | |
C25P30 | 0.25 | 742.8 | 738.1 | 494.1 | 211.8 | 176.5 | 14.11 | 5.29 | 65.0 |
0.25 | 742.8 | 738.1 | 494.1 | 211.8 | 176.5 | 14.11 | 5.29 | 66.2 | |
0.25 | 742.8 | 738.1 | 494.1 | 211.8 | 176.5 | 14.11 | 5.29 | 66.6 | |
C30P0 | 0.30 | 816.3 | 811.1 | 588.2 | 0.0 | 181.7 | 8.40 | 0.00 | 66.8 |
0.30 | 816.3 | 811.1 | 588.2 | 0.0 | 181.7 | 8.40 | 0.00 | 67.6 | |
0.30 | 816.3 | 811.1 | 588.2 | 0.0 | 181.7 | 8.40 | 0.00 | 68.3 | |
C30P10 | 0.30 | 809.6 | 804.4 | 529.4 | 58.8 | 181.3 | 8.82 | 0.00 | 69.3 |
0.30 | 809.6 | 804.4 | 529.4 | 58.8 | 181.3 | 8.82 | 0.00 | 70.0 | |
0.30 | 809.6 | 804.4 | 529.4 | 58.8 | 181.3 | 8.82 | 0.00 | 68.7 | |
C30P20 | 0.30 | 802.8 | 797.7 | 470.6 | 117.6 | 180.3 | 10.08 | 0.00 | 72.2 |
0.30 | 802.8 | 797.7 | 470.6 | 117.6 | 180.3 | 10.08 | 0.00 | 70.8 | |
0.30 | 802.8 | 797.7 | 470.6 | 117.6 | 180.3 | 10.08 | 0.00 | 70.9 | |
C30P25 | 0.30 | 799.4 | 794.4 | 441.2 | 147.1 | 179.9 | 10.50 | 1.47 | 65.7 |
0.30 | 799.4 | 794.4 | 441.2 | 147.1 | 179.9 | 10.50 | 1.47 | 64.6 | |
0.30 | 799.4 | 794.4 | 441.2 | 147.1 | 179.9 | 10.50 | 1.47 | 66.3 | |
C30P30 | 0.30 | 796.1 | 791.0 | 411.8 | 176.5 | 179.7 | 10.78 | 2.94 | 64.1 |
0.30 | 796.1 | 791.0 | 411.8 | 176.5 | 179.7 | 10.78 | 2.94 | 62.5 | |
0.30 | 796.1 | 791.0 | 411.8 | 176.5 | 179.7 | 10.78 | 2.94 | 62.6 | |
C35P0 | 0.35 | 851.5 | 846.1 | 504.2 | 0.0 | 184.2 | 5.70 | 0.00 | 60.5 |
0.35 | 851.5 | 846.1 | 504.2 | 0.0 | 184.2 | 5.70 | 0.00 | 62.2 | |
0.35 | 851.5 | 846.1 | 504.2 | 0.0 | 184.2 | 5.70 | 0.00 | 61.3 | |
C35P10 | 0.35 | 845.7 | 840.3 | 453.8 | 50.4 | 183.9 | 5.90 | 0.00 | 62.4 |
0.35 | 845.7 | 840.3 | 453.8 | 50.4 | 183.9 | 5.90 | 0.00 | 63.7 | |
0.35 | 845.7 | 840.3 | 453.8 | 50.4 | 183.9 | 5.90 | 0.00 | 62.4 | |
C35P20 | 0.35 | 839.9 | 834.6 | 403.4 | 100.8 | 183.7 | 6.05 | 0.00 | 64.4 |
0.35 | 839.9 | 834.6 | 403.4 | 100.8 | 183.7 | 6.05 | 0.00 | 63.1 | |
0.35 | 839.9 | 834.6 | 403.4 | 100.8 | 183.7 | 6.05 | 0.00 | 65.0 | |
C35P25 | 0.35 | 837.0 | 831.7 | 378.2 | 126.1 | 182.9 | 7.20 | 0.00 | 59.5 |
0.35 | 837.0 | 831.7 | 378.2 | 126.1 | 182.9 | 7.20 | 0.00 | 58.2 | |
0.35 | 837.0 | 831.7 | 378.2 | 126.1 | 182.9 | 7.20 | 0.00 | 58.7 |
Concrete Type | W/B Ratio | Constituent Materials (kg/m3) | ||||||
---|---|---|---|---|---|---|---|---|
CA | FA | OPC | POFA | W | HRWR | VMA | ||
C35P30 | 0.35 | 834.1 | 828.8 | 352.9 | 151.3 | 182.6 | 7.56 | 0.00 |
0.35 | 834.1 | 828.8 | 352.9 | 151.3 | 182.6 | 7.56 | 0.00 | |
0.35 | 834.1 | 828.8 | 352.9 | 151.3 | 182.6 | 7.56 | 0.00 | |
C40P0 | 0.40 | 877.8 | 872.3 | 441.2 | 0.0 | 185.6 | 4.20 | 0.00 |
0.40 | 877.8 | 872.3 | 441.2 | 0.0 | 185.6 | 4.20 | 0.00 | |
0.40 | 877.8 | 872.3 | 441.2 | 0.0 | 185.6 | 4.20 | 0.00 | |
C40P10 | 0.40 | 872.8 | 867.3 | 397.1 | 44.1 | 185.4 | 4.41 | 0.00 |
0.40 | 872.8 | 867.3 | 397.1 | 44.1 | 185.4 | 4.41 | 0.00 | |
0.40 | 872.8 | 867.3 | 397.1 | 44.1 | 185.4 | 4.41 | 0.00 | |
C40P20 | 0.40 | 886.8 | 862.2 | 352.9 | 88.2 | 184.9 | 5.04 | 0.00 |
0.40 | 886.8 | 862.2 | 352.9 | 88.2 | 184.9 | 5.04 | 0.00 | |
0.40 | 886.8 | 862.2 | 352.9 | 88.2 | 184.9 | 5.04 | 0.00 | |
C40P25 | 0.40 | 865.2 | 859.7 | 330.9 | 110.3 | 184.8 | 5.15 | 1.10 |
0.40 | 865.2 | 859.7 | 330.9 | 110.3 | 184.8 | 5.15 | 1.10 | |
0.40 | 865.2 | 859.7 | 330.9 | 110.3 | 184.8 | 5.15 | 1.10 | |
C40P30 | 0.40 | 862.7 | 857.2 | 308.8 | 132.4 | 184.2 | 5.88 | 2.21 |
0.40 | 862.7 | 857.2 | 308.8 | 132.4 | 184.2 | 5.88 | 2.21 | |
0.40 | 862.7 | 857.2 | 308.8 | 132.4 | 184.2 | 5.88 | 2.21 |
Experimental Compressive Strength (MPa) | Predicted Compressive Strength from ANN Model (MPa) | Absolute Error (MPa) | Relative Error (%) |
---|---|---|---|
57.9 | 58.2 | 0.3 | 0.52 |
58.2 | 58.3 | 0.1 | 0.17 |
56.9 | 58.2 | 1.3 | 2.28 |
55.1 | 55.7 | 0.6 | 1.09 |
56.5 | 55.8 | 0.7 | 1.24 |
57.0 | 55.8 | 1.2 | 2.10 |
58.9 | 55.9 | 3.0 | 5.09 |
57.0 | 55.9 | 1.1 | 1.93 |
57.9 | 55.9 | 2.0 | 3.45 |
58.6 | 55.7 | 2.9 | 4.95 |
57.6 | 55.7 | 1.9 | 3.30 |
58.4 | 55.7 | 2.7 | 4.62 |
54.0 | 55.5 | 1.5 | 2.78 |
53.9 | 55.5 | 1.6 | 2.97 |
54.4 | 55.5 | 1.1 | 2.02 |
51.9 | 55.4 | 3.5 | 6.74 |
52.0 | 55.4 | 3.4 | 6.54 |
53.0 | 55.4 | 2.4 | 4.53 |
Mean: 1.74 | Mean: 3.13 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safiuddin, M.; Raman, S.N.; Abdus Salam, M.; Jumaat, M.Z. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash. Materials 2016, 9, 396. https://doi.org/10.3390/ma9050396
Safiuddin M, Raman SN, Abdus Salam M, Jumaat MZ. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash. Materials. 2016; 9(5):396. https://doi.org/10.3390/ma9050396
Chicago/Turabian StyleSafiuddin, Md., Sudharshan N. Raman, Md. Abdus Salam, and Mohd. Zamin Jumaat. 2016. "Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash" Materials 9, no. 5: 396. https://doi.org/10.3390/ma9050396
APA StyleSafiuddin, M., Raman, S. N., Abdus Salam, M., & Jumaat, M. Z. (2016). Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash. Materials, 9(5), 396. https://doi.org/10.3390/ma9050396