Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy
Abstract
:1. Introduction
2. Experimental Fixture and Experiments
2.1. Experimental Fixture
2.2. Materials
2.3. Experiments
3. Results and Discussion
3.1. Fretting Fatigue Life
3.2. Fractographic Observations
3.3. Fretting Scar and Debris
3.4. Micro-Hardness
4. Conclusions
- (1).
- The fretting fatigue limit of AlSi9Cu2Mg alloy was 42 MPa under 62.5 MPa contact stress, which is 47% of the plain fatigue limit (89 MPa). The fretting fatigue crack initiated near the contact edge of the specimen.
- (2).
- The fretting fatigue life of AlSi9Cu2Mg alloy decreases with increasing alternating stress. Simultaneously, the percent decrease of fatigue life due to fretting is up to 62% under the same alternating stress level.
- (3).
- The oxidation-assisted wear mechanism is predominant in the AlSi9Cu2Mg alloy specimen under the fretting condition. With the alternating stress load on specimens, the combination effect of the stress raiser at the edge of the contact and the stress concentration on the fretting region brings the initiation and propagation of cracks. As a result, the fatigue strength and fatigue life of AlSi9Cu2Mg alloy sharply decline.
- (4).
- The average micro-harnesses of the fretting region and the region away from the fretting are 173 HV and 116 HV, respectively. The micro-hardness is higher than the specimen interior underneath the fretting damage surface. The micro-hardness is lower than the specimen interior in places far from the fretting damage region.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Majzoobi, G.H.; Jaleh, M. Duplex surface treatments on AL7075-T6 alloy against fretting fatigue behavior by application of titanium coating plus nitriding. Mater. Sci. Eng. A 2007, 452–453, 673–681. [Google Scholar] [CrossRef]
- Wei, D.S.; Wang, Y.R. Analysis of fretting fatigue life of dovetail assemblies based on fracture mechanics method. Eng. Fail. Anal. 2012, 25, 144–155. [Google Scholar] [CrossRef]
- Arora, P.R.; Jacob, M.S.D.; Salit, M.S.; Ahmed, E.M.; Saleem, M.; Edia, P. Experimental evaluation of fretting fatigue test apparatus. Int. J. Fatigue 2007, 29, 941–952. [Google Scholar] [CrossRef]
- Golden, P.J. Development of a dovetail fretting fatigue fixture for turbine engine materials. Int. J. Fatigue 2009, 31, 620–662. [Google Scholar] [CrossRef]
- Azevedo, C.R.F.; Henriques, A.M.D.; Pulino Filho, A.R.; Ferreira, J.L.A.; Araújo, J.A. Fretting fatigue in overhead conductors: Rig design and failure analysis of a Grosbeak aluminium cable steel reinforced conductor. Eng. Fail. Anal. 2009, 16, 136–151. [Google Scholar] [CrossRef]
- Wang, D.G.; Zhang, D.K.; Zhang, Z.F.; Ge, S.R. Effect of various kinematic parameters of mine hoist on fretting parameters of hoisting rope and a new fretting fatigue test apparatus of steel wires. Eng. Fail. Anal. 2012, 22, 92–112. [Google Scholar] [CrossRef]
- Zhao, L.; He, X.C.; Xing, B.Y.; Lu, Y.; Gu, F.S.; Ball, A. Influence of sheet thickness on fatigue behavior and fretting of self-piercing riveted joints in aluminum alloy 5052. Mater. Des. 2015, 87, 1010–1017. [Google Scholar] [CrossRef]
- Kim, K.; Geringer, J. Analysis of energy dissipation in fretting corrosion experiments with materials used as hip prosthesis. Wear 2012, 296, 497–503. [Google Scholar] [CrossRef]
- Majzoobi, G.H.; Hojjati, R.; Nematian, M.; Zalnejad, E.; Ahmadkhani, A.R.; Hanifepoor, E. A new device for fretting fatigue testing. Trans. Indian Inst. Met. 2010, 63, 493–497. [Google Scholar] [CrossRef]
- Naidu, N.K.R.; Raman, S.G.S. Effect of contact pressure on fretting fatigue behaviour of Al-Mg-Si alloy AA6061. Int. J. Fatigue 2005, 27, 283–291. [Google Scholar] [CrossRef]
- Iyer, K. Peak contact pressure, cyclic stress amplitudes, contact semi-width and slip amplitude: Relative effects on fretting fatigue life. Int. J. Fatigue 2001, 23, 193–206. [Google Scholar] [CrossRef]
- Muthu, J. Fatigue life of 7075-T6 aluminium alloy under fretting condition. Theo. Appl. Fract. Mech. 2014, 74, 200–208. [Google Scholar] [CrossRef]
- Vázquez, J.; Navarro, C.; Domínguez, J. Experimental results in fretting fatigue with shot and laser peened Al 7075-T651 specimens. Int. J. Fatigue 2012, 40, 143–153. [Google Scholar] [CrossRef]
- Vázquez, J.; Navarro, C.; Domínguez, J. Analysis of the effect of a textured surface on fretting fatigue. Wear 2013, 305, 23–35. [Google Scholar] [CrossRef]
- Liu, X.Y.; Su, T.X.; Zhang, Y.; Yuan, M.N. A multiaxial high-cycle fatigue life evaluation model for notched structural components. Int. J. Fatigue 2015, 80, 443–448. [Google Scholar] [CrossRef]
- Cha, S.; Chang, H.; Lee, K.W. A development of the fretting fatigue analysis techniques for engine aluminum block. SAE Int. J. Mater. Manuf. 2011, 4, 613–619. [Google Scholar] [CrossRef]
- Wei, Z.M.; Tan, J.S.; Zhang, Z.M.; Wen, S.J.; Chen, Z.Z.; Li, J.Y. Research on dependability of crankcase affected by fretting wear. Veh. Engine 2006, 162, 56–58. [Google Scholar]
- Cho, I.S.; Amanov, A.; Kwak, D.H.; Jeong, B.J.; Park, I.G. The influence of surface modification techniques on fretting wear of Al-Si alloy prepared by gravity die casting. Mater. Des. 2015, 65, 401–409. [Google Scholar] [CrossRef]
- Chen, J.S.; Wang, C.Y.; Bai, L.S. Research on high strength casting aluminum alloy ZL702A for cylinder head material. J. Mat. Eng. 1990, 18, 21–23. [Google Scholar]
- Deng, X.F. A Mechanism Research on Effect of Steady Magnetic Field on Microstructure and Properties of ZL702 Aluminum Alloy. Master’s Thesis, North University of China, Taiyuan, China, June 2014. [Google Scholar]
- Wu, G.Q.; Li, Z.; Sha, W.; Li, H.H.; Huang, L.J. Effect of fretting on fatigue performance of Ti-1023 titanium alloy. Wear 2014, 309, 74–81. [Google Scholar] [CrossRef]
- Rahmat, M.A.; Ibrahim, R.N.; Oskouei, R.H. A study on the combined effect of notch and fretting on the fatigue life behaviour of Al 7075-T6. Mater. Des. 2014, 60, 136–145. [Google Scholar] [CrossRef]
- Wittkowsky, B.U.; Birch, P.R.; Dominguez, J.; Suresh, S. Apparatus for quantitative fretting fatigue testing. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 307–320. [Google Scholar] [CrossRef]
- Borms, N.; de Schamphelaere, D.; de Pauw, J.; de Baets, P.; de Waele, W. Conceptual design of a fretting fatigue testing device. Sustain. Constr. Des. 2011, 2, 370–377. [Google Scholar]
- Szolwinski, M.P.; Farris, T.N. Observation analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy. Wear 1998, 221, 24–36. [Google Scholar] [CrossRef]
- Sadeler, R.; Atasoy, S.; Arıcı, A.; Totik, Y. The fretting fatigue of commercial hard anodized aluminum alloy. J. Mater. Eng. Perform. 2009, 18, 1280–1284. [Google Scholar] [CrossRef]
- Vázquez, J.; Navarro, C.; Domínguez, J. Analytical solution for a cylindrical contact with reverse slip. J. Strain Anal. Eng. 2013, 48, 189–197. [Google Scholar] [CrossRef]
- Takeda, J.; Niinomi, M.; Akahori, T.; Gunawarman. Effect of microstructure on fretting fatigue and sliding wear of highly workable titanium alloy, Ti-4.5Al-3V-2Mo-2Fe. Int. J. Fatigue 2004, 26, 1003–1015. [Google Scholar] [CrossRef]
- Vázquez, J.; Navarro, C.; Domínguez, J. Analysis of fretting fatigue initial crack path in Al7075-T651 using cylindrical contact. Tribol. Int. 2016, in press. [Google Scholar]
- Fu, Y.Q.; Wei, J.; Batchelor, A.W. Some considerations on the mitigation of fretting damage by the application of surface-modifcation technologies. J. Mater. Proces. Technol. 2000, 99, 231–245. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Y. Research on mechanism of LY12CZ aluminum alloy fretting damage. J. Aero. Mater. 2002, 22, 1–4. [Google Scholar]
Element | Si | Cu | Mg | Mn | Ti | Al |
---|---|---|---|---|---|---|
wt % | 6–8 | 1.3–1.8 | 0.3–0.5 | 0.1–0.3 | 0.001–0.0025 | Balance |
Element | C | Mn | Si | Cr | Mo | P | S | Fe |
---|---|---|---|---|---|---|---|---|
wt % | 0.38–0.45 | 0.50–0.80 | 0.17–0.37 | 0.90–1.20 | 0.15–0.25 | ≤0.035 | ≤0.035 | Balance |
Materials | Young’s Modulus, GPa | Yield Strength, MPa | Ultimate Strength, MPa | Poisson’s Ratio | Elongation,% |
---|---|---|---|---|---|
AlSi9Cu2Mg | 69 | 178 | 290 | 0.31 | 4 |
42CrMo | 206 | ≥930 | ≥1080 | 0.28 | ≥12 |
Fmax (kN) | σmax (MPa) | σn = 62.5 MPa | σn = 0 MPa | (1 − Nf50/Np50)% | ||||
---|---|---|---|---|---|---|---|---|
Nf (Cycles) | Nf50 (Cycles) | CV | Np (Cycles) | Np50 (Cycles) | CV | |||
6 | 51.88 | 1,135,515 | 837,007 | 0.023 | >107 | - | - | - |
853,561 | ||||||||
605,006 | ||||||||
7 | 60.52 | 692,825 | 496,635 | 0.023 | >107 | - | - | - |
456,878 | ||||||||
386,980 | ||||||||
8 | 69.17 | 476,179 | 277,014 | 0.042 | >107 | - | - | - |
269,412 | ||||||||
165,698 | ||||||||
9 | 77.82 | 315,701 | 168,030 | 0.055 | >107 | - | - | - |
85,272 | ||||||||
176,230 | ||||||||
10 | 86.47 | 168,030 | 110,765 | 0.033 | >107 | - | - | - |
103,090 | ||||||||
78,452 | ||||||||
12 | 103.75 | 34,954 | 74,452 | 0.081 | 94,117 | 180,588 | 0.048 | 59 |
57,643 | 213,990 | |||||||
204,825 | 292,418 | |||||||
14 | 121.04 | 11,061 | 18,792 | 0.062 | 43,293 | 46,945 | 0.044 | 60 |
16,327 | 30,590 | |||||||
36,745 | 78,122 | |||||||
16 | 138.34 | 7902 | 14,805 | 0.060 | 54,830 | 35,592 | 0.037 | 58 |
24,825 | 26,641 | |||||||
16,542 | 30,246 | |||||||
18 | 155.63 | 865 | 756 | 0.088 | 3423 | 2013 | 0.088 | 62 |
398 | 946 | |||||||
1254 | 2519 |
Fc (kN) | σn (MPa) | Nf (Cycles) | Nf50 (Cycles) | CV |
---|---|---|---|---|
2 | 62.5 | 443,579 | 477,014 | 0.024 |
669,215 | ||||
365,643 | ||||
3 | 93.75 | 435,712 | 280,018 | 0.033 |
190,127 | ||||
265,042 | ||||
4 | 125 | 249,244 | 156,074 | 0.037 |
146,563 | ||||
104,075 | ||||
4.5 | 140.63 | 120,421 | 85,326 | 0.033 |
90,645 | ||||
56,912 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, H.; Su, T.; Zhang, Y.; Guo, Z.; Mao, H.; Zhang, Y. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy. Materials 2016, 9, 984. https://doi.org/10.3390/ma9120984
Wang J, Xu H, Su T, Zhang Y, Guo Z, Mao H, Zhang Y. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy. Materials. 2016; 9(12):984. https://doi.org/10.3390/ma9120984
Chicago/Turabian StyleWang, Jun, Hong Xu, Tiexiong Su, Yi Zhang, Zhen Guo, Huping Mao, and Yangang Zhang. 2016. "Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy" Materials 9, no. 12: 984. https://doi.org/10.3390/ma9120984
APA StyleWang, J., Xu, H., Su, T., Zhang, Y., Guo, Z., Mao, H., & Zhang, Y. (2016). Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy. Materials, 9(12), 984. https://doi.org/10.3390/ma9120984