Next Article in Journal
Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels
Previous Article in Journal
Synthesis and In Vitro Activity Assessment of Novel Silicon Oxycarbide-Based Bioactive Glasses
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Materials 2016, 9(12), 958;

The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials

Department of Prosthodontics, School of Dentistry, Albert-Ludwigs University, Hugstetter Strasse 55, 79106 Freiburg, Germany
Institute for Dental Materials and Engineering, University Hospital for Dental Medicine, University of Basel, 4056 Basel, Switzerland
Author to whom correspondence should be addressed.
Academic Editor: Jordi Sort
Received: 16 August 2016 / Revised: 14 November 2016 / Accepted: 17 November 2016 / Published: 24 November 2016
(This article belongs to the Section Biomaterials)
Full-Text   |   PDF [10906 KB, uploaded 24 November 2016]   |  


Objective: Improvements in the bioactivity of zirconia implants for accelerated healing and reduced morbidity have been of continuing interest in the fields of dentistry and orthopedic surgery. The aim of the present study was to examine whether UV treatment increases the osteoconductivity of zirconia-based materials. Materials and Methods: Smooth and rough zirconia-based disks and cylindrical implants were treated with UV light for 15 min and subsequently placed in rat femurs. Surface characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Results: In vivo histomorphometry revealed that the percentage of bone-implant contact and the amount of bone volume, formed around UV-treated implants, increased by 3–7-fold for smooth surfaces and by 1.4–1.7-fold for rough surfaces compared to non-treated specimens at Weeks 2 and 4 of healing, respectively. A biomechanical test showed that UV treatment accelerated the establishment of bone-zirconia integration and enhanced the strength of the bone-implant interface by two-fold. Additionally, surface characterization of the zirconia disks revealed that UV treatment decreased the amount of surface carbon and converted the hydrophilic status from hydrophobic to superhydrophilic. Conclusions: This study indicates that UV light pretreatment enhances the osteoconductive capacity of zirconia-based materials. View Full-Text
Keywords: osseointegration; zirconia; implant surface; photofunctionalization; ultraviolet treatment; bone osseointegration; zirconia; implant surface; photofunctionalization; ultraviolet treatment; bone

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Brezavšček, M.; Fawzy, A.; Bächle, M.; Tuna, T.; Fischer, J.; Att, W. The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials. Materials 2016, 9, 958.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top